User Guide

Mentor II

DC Drives
25 A to 1850 A output

Safety Information

Persons supervising and performing the electrical installation or maintenance of a Drive and/or an external Option Unit must be suitably qualified and competent in these duties. They should be given the opportunity to study and if necessary to discuss this User Guide before work is started.
The voltages present in the Drive and external Option Units are capable of inflicting a severe electric shock and may be lethal. The Stop function of the Drive does not remove dangerous voltages from the terminals of the Drive and external Option Unit. Mains supplies should be removed and left removed for a minimum of 2 minutes before any servicing work is performed.
The installation instructions should be adhered to. Any questions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the Drive and external Option Unit, and the way in which they are operated and maintained complies with the requirements of the Health and Safety at Work Act in the United Kingdom and applicable legislation and regulations and codes of practice in the UK or elsewhere.
The Drive software may incorporate an optional Auto-start facility. In order to prevent the risk of injury to personnel working on or near the motor or its driven equipment and to prevent potential damage to equipment, users and operators, all necessary precautions must be taken if operating the Drive in this mode.

The Stop and Start inputs of the Drive should not be relied upon to ensure safety of personnel. If a safety hazard could exist from unexpected starting of the Drive, an interlock should be installed to prevent the motor being inadvertently started.

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the Drive with the motor.
The contents of this User Guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the User Guide, without notice.
All rights reserved. No part of this User Guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information storage or retrieval system, without permission in writing from the publisher.

Important! Drive software version

This product is supplied with the latest version of user-interface and machine-control software.
If this product is to be used with other Control Techniques variable speed drives in an existing system, there may be some differences between their software and the software in this product. These differences may cause a difference in functions. This may also apply to variable speed drives returned from a Control Techniques Service Centre. If there is any doubt, contact a Control Techniques Drive Centre.
$\begin{array}{ll}\text { Copyright } & \text { © May } 2000 \text { Control Techniques Drives Limited } \\ \text { Issue Code: } \\ 10\end{array}$

Table of Contents

$1 \quad$ Features of Mentor II 1
1.1 Mentor II parameters 1
1.2 Supply phase-sequence 1
1.3 Output 1
1.4 Speed feedback 1
1.5 Speed reference 1
1.6 Serial communications interface 1
1.7 Current feedback 1
1.8 Control 1
1.9 Speed resolution 2
2 Safety Information 3
3Introduction5
3.1 DC motor control 5
3.2 Principles of the variable speed Drive 5
3.3 Reversing 6
3.5 Menus 7
3.6 Serial Communications 8
4 Data 9
4.1 Specifications 9
4.2 Ratings 10
4.2.1 Current, input and output 10
4.2.2 Fuses and cabling 11
4.2.3 Ventilation and weight 13
4.2.4 Losses 14
4.2.5 Recommended Line Reactors 14
4.2.6 Field Current Rating 14
5 Mechanical Installation 15
5.1 Dimensions 15
5.2 Mounting 15
5.3 Cooling and Ventilation 16
6 Electrical Installation 23
6.1 Installation Criteria 23
6.2 Power Connections 25
6.3 Current Feedback Burden Resistors 28
6.4 Control Connections 29
1 Terminals index 30
2 Terminals classified 31
7 Operating Procedures 35
7.1Keypad and Displays35
7.2 Setting Up to Run 36
7.3 Getting Started 38
8 Parameter Set 43
8.1 Adjustment of Parameters 44
8.2 Security 46
8.3 Index of parameters 48
8.4 Parameter descriptions 68
8.5 Menu logic diagrams 121
9 Diagnostic Procedures 133
10 Serial Communications 135
11 Option Cards 143
11.1MD29143
11.2CTNet (MD29AN)143
11.3 Interbus-S (MDIBS) 14311.411.511.611.7
12 12
Profibus-DP (MD24) 143
DeviceNet (MD25) 143
IO Box 143
Field Control Unit FXM5 144
Electromagnetic Compatibility 147

CONTROL TECHNIQUES DRIVES LTD
THE GRO, NEWTOWN, POWYS. SY16 3BE

DECLARATION OF CONFORMITY

The DC variable speed drive product Mentor II current range $25 \mathrm{~A}-1850 \mathrm{~A}$, single quadrant and four quadrant versions, has been designed and manufactured in accordance with the following European harmonised, national and international standards:

EN60249	Base materials for printed circuits
IEC326-1	Printed boards: General information for the specification writer IEC326-5
	Printed boards: Specification for single and double sided printed boards with plated through holes
IEC326-6	Printed boards: Specification for multilayer printed boards
IEC664-1	Insulation co-ordination for equipment within low-voltage systems: Principles, requirements and tests
EN60529	Degrees of protection provided by enclosures (IP code) UL94
Flammability rating of plastic materials	
*CSA C22.2 0-M1982	General Requirements, Canadian Electrical Code, Part II *CSA C22.2 0.4-M1982 Bonding \& Grounding of Electrical Equipment (Protective Grounding)
*CSA C22.2 14-M1987	Industrial Control Equipment
UL508	Standard for Power Conversion Equipment
* Applies to Mentor II current range 900A - 1850A only	

This product complies with the Low Voltage Directive 73/23/EEC and the CE Marking Directive 93/68/EEC.

W. Drury
Technical Director

Newtown
Date:30 April 1998

Note

This electronic drive product is intended to be used with an appropriate motor, controller, electrical protection components and other equipment to form a complete end product or system. It must only be installed by a professional assembler who is familiar with requirements for safety and electromagnetic compatibility ("EMC"). The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the product manual or EMC data sheet for further information on EMC standards complied with by the product, and guidelines for installation.

Mentor II

Issue Number: 10

This page is intentionally blank

1 Features of Mentor II

1.1 Mentor II parameters

Mentor II is equipped with a range of parameters designed to give the utmost flexibility of application to industrial requirements. The parameters are arranged in menus, as being the most convenient way of making access easy and quick for the user.

Within each menu, those parameters which are needed only for customization of the Drive for the more complex applications have been made invisible that is, they are normally inaccessible except through high level security access. With low level security access, invisible parameters do not appear in the digital display.

This arrangement has the effect of reducing the apparent size of the menus for greater convenience in normal use, and ensuring the maximum protection for the parameters which are specially set up for a particular application or process.

1.2 Supply phase-sequence

Loss of one or more phases of input is automatically detected. Drive will run irrespective of input phase rotation.

1.3 Output

- 6-pulse firing of output thyristors (SCRs). Optionally configurable to (series or parallel) 12-pulse operation.

1.4 Speed feedback

- Motor armature voltage, or
- Tachogenerator (tachometer), or
- Encoder (pulse tachometer).
- PID speed loop algorithm.

1.5 Speed reference

- -10 V to +10 V
- 0 to 10 V
- 4 to 20 mA
- 20 to 4 mA
- 0 to 20 mA
- 20 to 0 mA
- Encoder digital input
- Internally-generated digital reference.

1.6 Serial communications interface

- RS485 serial communications port, opticallyisolated.

1.7 Current feedback

- Resolution 0.1\%.
- Current loop linearity 2%, bandwidth 80 Hz .
- Uniform response at all current values.

1.8 Control

- All analog and most digital inputs configurable by the user for specific applications.
- PID speed loop algorithm.
- Provision for encoder inputs for position control.
- On-board provision for tachogenerator (tachometer) calibration.
- Programmable control of field-weakening.
- Phase sequence and phase-loss detection.
- Software includes current loop self-tuning algorithm.
- Menu-driven parameter structure.
- Drive returns to last parameter adjusted in each menu.
- User-defined menu for quick access to mostused parameters.

1.9 Speed resolution

Reference		Feedback		Combined resolution
Analog	0.025%	Armature volts	0.83 V	0.83 V
Analog	0.025%	Tachogenerator (tachometer)	0.1%	0.125%
Digital	0.1%	Tachogenerator (tachometer)	0.1%	0.2%
Analog	0.025%	Encoder	0.01%	0.035%
Digital	0.1%	Encoder	0.01%	0.11%
Encoder		Encoder		Absolute

2 Safety Information

2.1 Warnings, Cautions and notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of the product.

2.2 Electrical safety general warning

The voltages used in the Drive can cause severe electric shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the Drive.

Specific warnings are given at the relevant places in this User Guide.

The installation must comply with all relevant safety legislation in the country of use.

2.3 System design

The Drive is intended as a component for professional incorporation into complete equipment or systems. If installed incorrectly the Drive may present a safety hazard. The Drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control mechanical equipment which can cause injury.

Close attention is required to the electrical installation and the system-design to avoid hazards either in normal operation or in the event of equipment malfunction. System-design, installation, commissioning and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and this User Guide carefully.

To ensure mechanical safety, additional safety devices such as electro-mechanical interlocks may be required. The Drive must not be used in a safety-critical application without additional high-integrity protection against hazards arising from a malfunction.

2.4 Environmental limits

Instructions in this User Guide regarding transport, storage, installation and use of Drives must be complied with, including the specified environmental limits. Drives must not be subjected to excessive physical force.

2.5 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the crosssectional areas of conductors, the selection of fuses or other protection, and protective earth (ground) connections.

This User Guide contains instructions for achieving compliance with specific EMC standards.

Within the European Union, all machinery in which this product is used must comply with the following directives:

98/37/EC: Safety of Machinery
89/336/EEC: Electromagnetic Compatibility.

2.6 Safety of personnel

The STOP function of the Drive does not remove dangerous voltages from the output of the Drive or from any external option unit.

The Stop and Start controls or electrical inputs of the Drive must not be relied upon to ensure safety of personnel. If a safety hazard could exist from unexpected starting of the Drive, an interlock that electrically isolates the Drive from the AC supply must be installed to prevent the motor being inadvertently started.

Careful consideration must be given to the functions of the Drive which might result in a hazard, either through their intended functions (eg. Auto-start) or through incorrect operation due to a fault or trip (eg. stop/start, forward/reverse, maximum speed).

Under certain conditions, the Drive can suddenly discontinue control of the motor. If the load on the motor could cause the motor speed to be increased (eg. hoists and cranes), a separate method of braking and stopping the motor must be used (eg. a mechanical brake).

Before connecting the AC supply to the Drive, it is important that you understand the operating controls and their operation. If in doubt, do not adjust the Drive. Damage may occur, or lives put at risk. Carefully follow the instructions in this User Guide.

Before making adjustments to the Drive, ensure all personnel in the area are warned. Make notes of all adjustments that are made.

2.7 Risk analysis

In any application where a malfunction of the Drive could lead to damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk. This would normally be an appropriate form of independent safety back-up system using simple electromechanical components.

2.8 Motor

Ensure the motor is installed in accordance with the manufacturer's recommendations. Ensure the motor shaft is not exposed.

Low speeds may cause the motor to over-heat because the cooling fan becomes less effective. If necessary, a separate cooling fan should be used. The motor should be fitted with a protection thermistor.

If a Drive is to be used to control a number of motors, special measures need to be taken to ensure protection of the motors.

2.9 Adjusting parameters

Some parameters have a profound effect on the operation of the Drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.

3 Introduction

Mentor II is the latest family of advanced, fully microprocessor-controlled DC variable speed industrial Drives. The range of output current is from 25A to 1850A. All sizes share control, monitoring, protection and serial communications features.
All units are available alternatively in either singleended or four-quadrant configuration. Singleended Drives provide forward run operation only. Four-quadrant Drives are fully-reversible. Both types offer comprehensive control of motor speed and/or torque, the four-quadrant Drives providing full control in both directions of rotation. Operating parameters are selected and changed either at the keypad or through the serial communications link (interface). Access for writing or changing parameter values can be protected by the three-level security code system.

3.1 DC motor control

The functions of a DC motor which must be controllable for practical use are the speed, the torque delivered, and the direction of rotation. Speed is proportional to armature back-emf and inversely proportional to field flux. Torque is proportional to armature current and field flux. Direction of rotation is simply a matter of the relative polarities of the armature and field voltages. It follows that it is necessary to control:

1 The armature voltage; back-emf is a component of armature voltage. Thus, assuming the field to be constant, control of armature voltage provides complete control of speed up to the point where the voltage reaches the maximum value for which the armature is designed. Armature current is also a function of armature voltage, so that within the speed range up to maximum voltage, torque is controlled by voltage also. Provided that the field is fully-excited, the availability of maximum torque is normally maintained from zero speed up to armature voltage maximum (base speed).

2 The field voltage; this determines the field current and, in consequence, field flux. If field voltage can be varied independently of the armature voltage, speed can be increased at full power (full armature voltage) beyond the point where the applied armature voltage and current are at maximum. Since torque is directly proportional to field flux, maximum torque is reduced if speed is increased by weakening the field.

Basically, therefore, a variable speed DC Drive is a means of controlling the voltage applied to the armature of the motor, and thus the current delivered to the motor. The Drive may be equipped with means for control of the field if speeds higher than base speed are required. Separate control of the field within the operating range up to base speed can be exploited also, to obtain extended control of speed and torque for more-complex motor applications. If a suitable feedback is available, position control becomes possible.

3.2 Principles of the variable speed Drive

A single phase voltage applied to a fully-controlled thyristor (SCR) bridge and a resistive load produces an intermittent flow of current which is started by the firing of the thyristor (SCR), and stopped as a result of the supply voltage passing through zero at the end of each half cycle. Maximum voltage is delivered when the firing angle is fully advanced, that is, when f in Fig. 1 becomes zero. Retarding the firing angle reduces the current output. When the load is inductive, such as a motor, or the firing angle is sufficiently advanced, current becomes continuous. The fundamental of the current characteristically lags behind the voltage due partly to the inductive nature of the load and partly due to firing angle delay.

Behavior of a single-phase fully-controlled thyristor rectifier (SCR) supplying a highly-inductive load.

Fig 1

Typical arrangement for reversing a "single-ended" DC drive using an interlocked pair of contactors in the armature circuit

Fig 2

3.3 Reversing

Reversal of rotation is done in one of two ways, dependent on the type of Drive bridge configuration. The simplest fully-controllable arrangement of thyristor (SCR) bridge configuration to operate from a 3 -phase AC supply is a full-wave bridge but this is not capable of reversing the output polarity. This type, which is called singlequadrant or single-ended, requires a means of switching the motor terminals externally as shown in Fig. 2 if reversing is required. For some applications this simple system is an adequate practical solution.

If, however, the motor application is such that it demands complete control of motor operation in both directions, with the ability to reverse motor torque rapidly and frequently, two anti-parallel bridges must be used, Fig.3. This configuration provides full control of forward and reverse Drive and forward and reverse braking without the need for reversing contactors, and is called fourquadrant, Fig. 4.

If braking is required with a single-ended Drive, an external circuit has to be provided, Fig. 5 (dynamic braking). In this case, deceleration is neither controlled nor linear.

Dual bridge or parallel-pair 3-phase thyristor (SCR) arrangement for a 4-quadrant DC motor drive

Fig 3

The four quadrants of the DC motor torque-speed diagram

Fig 4

Fig 5

3.4 Control

Regardless of whether a Drive is single- or fourquadrant, motor response is fundamentally a function of voltage output, which is a function of the firing angle of the thyristor (SCR) bridge, and this can be controlled precisely.
The quality of the response obtained from the motor is, therefore, dependent on the ability of the Drive logic to receive, interpret and process a complete range of data concerning the state of the motor, and the desired state. Some of this data may be from external sources, such as the speed reference (demand), torque reference, motor speed feed-back, and so on; some are derived internally by the Drive logic itself, for example, output voltage and current, and the demand condition of the logic system at various stages.
The logic system requires a set of instructions to allow it to undertake the process of interrogation, processing and signal-generation to control thyristor (SCR) firing. The instructions are provided in the form of data broken down into individual values or parameters for the user to provide in accordance with the particular operations required for the motor application. The behavior of the Drive in terms of any given industrial application is a function of the information it receives for processing from user-written and internally-monitored parameter values.
For this reason, the Mentor II Drive is equipped with a dedicated microprocessor, and with software which is configured by the parameters written to it by the user. The parameters cover every significant factor related to motor performance, so that the user can set the Drive up to meet the application requirements exactly. Further parameters are provided for communications, security and other operational functions.

3.5 Menus

The number of parameters is large, but understanding of them and access to them have been greatly facilitated by arranging them in menus, each menu covering a particular logical or functional grouping. An overview of the control logic system of the Drive and a graphical representation of each individual menu will be found in the set of logic diagrams at the end of Chapter 8.

3.6 Serial Communications

The serial communications link (interface) with which the Mentor II Drive is equipped is a significant feature in relation to operation within an industrial process application. For example, external programmable process logic controllers (PLCs) can be set up with access to the whole or part of the Drive logic, enabling the setting of parameters to be changed, virtually instantaneously, to suit different stages of a duty cycle or different operating conditions in the process.
The serial communications facility also provides for the operation of the Drive to be continuously monitored for control or analytical purposes.

4 Data

4.1 Specifications

Maximum input voltage to Drive (L1, L2 and L3, i.e. main power to thyristor bridge)

$480 \mathrm{~V}+10 \%$	standard
$525 \mathrm{~V}+10 \%$	optional
$660 \mathrm{~V}+10 \%$	special order

Maximum recommended motor voltage

Varm $=1.15 \times$ Vsupply

Input power supply voltage

 (E1, E2 and E3, i.e. auxiliary power supply)Balanced 3-phase $3-$ wire, 45 Hz to 62 Hz , maximum $480 \mathrm{~V}+10 \%$.

With the higher voltage ($525 \mathrm{~V}, 660 \mathrm{~V}$) versions the maximum power supply voltage is also $480 \mathrm{~V}+10 \%$.

The input to the control (electronic) circuits is:-
Standard -
2-wire, $220 \mathrm{~V}-10 \%$ to $480 \mathrm{~V}+10 \%$
With North American field bridge -
3 -wire, $220 \mathrm{~V}-10 \%$ to $480 \mathrm{~V}+10 \%$

NOTE

E1 \& E3 must be connected to the same phases as L1 \& L3

Output supplies and references (Short-circuit proof)

10 V reference $\pm 5 \% 10 \mathrm{~mA}$ Drive capability. Encoder supply 300 mA Drive capability at 5 V , 12 V or 15 V selectable.
+24 V supply 200 mA Drive capability for relays.
All outputs are wire-proof - unaffected by accidental short circuiting.

Ambient temperature \& humidity

Rated ambient temperature $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
Rated maximum altitude 1000 m (3200 ft).
Storage temperature range $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ($-40^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}$)
Humidity requirement non-condensing.

Derating

Nominal ratings are affected by:

1) The altitude of the installation.

Where the site is above 1000 m (3200 ft), reduce the normal full load current by 1.0% for each additional 100 m (320 ft), up to a maximum of 4000 m .
2) The ambient temperature.

Where the local ambient temperature is above $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, derate by 1.5% per ${ }^{\circ} \mathrm{C}$ up to $55^{\circ} \mathrm{C}$ (0.75% per ${ }^{\circ} \mathrm{F}$ up to $131^{\circ} \mathrm{F}$).

Enclosure Ingress Protection

Mentor II Drives are constructed in accordance with European IP00 specification. Mentor II Drives are suitable for mounting in NEMA ingress-protected enclosures.

The Drive must be protected against moisture and conductive contamination. The Drive is intended for use in pollution degree 2 environments.

4.2 Ratings

4.2.1 Current, input and output

Mentor is suitable in a circuit capable of delivering no more than 10000 RMS symmetrical amperes for M25-M210 and M25R-M210R and 18000 RMS symmetrical amperes for M350-M825 and M350R-M825R short circuit current, $480 \mathrm{~V}+10 \%$ maximum.

Drive type \& model		Typical* ratings				Maximum continuous current rating	
Single Quadrant	Four Quadrant	at 400 V (armature)		at 500 V (armature)		input	output
		kW	HP	kW	HP	Aac	Adc
M25	M25R	7.5	10	9	12	21	25
M45	M45R	15	20	19	25	38	45
M75	M75R	30	40	38	50	60	75
M105	M105R	37.5	50	47	63	88	105
M155	M155R	56	75	70	94	130	155
M210	M210R	75	100	94	126	175	210
M350	M350R	125	168	156	209	292	350
M420	M420R	150	201	188	252	350	420
M550	M550R	200	268	250	335	460	550
M700	M700R	250	335	313	420	585	700
M825	M825R	300	402	375	503	690	825
M900	M900R	340	456	425	570	750	900
M1200	M1200R	450	603	563	755	1000	1200
M1850	M1850R	750	1005	938	1258	1540	1850

* Motor rating may be increased at higher armature voltages.

Refer to Section 4.1, Maximum Recommended Motor Voltages.

4.2.2 Fuses and cabling

The AC supply to the Drive must be fitted with suitable protection against overload and short-circuits. The following table shows recommended fuse ratings. Failure to observe this recommendation will cause a risk of fire.

Drive type \& model		HRC	Recommended fuse ratings Semiconductor (1)		Typical cable size	
Single Quadrant	Four Quadrant					
		Rated Input AC	Rated Input AC	Rated Output DC	AC input	DC output
		A	A	A	mm ${ }^{2}$ (2)	AWG (3)
M25		32	35	NR	4	10
	M25R	32	35	40 (4)	4	10
M45		50	60	NR	6	6
	M45R	50	60	70 (4)	6	6
M75		100	100	NR	25	2
	M75R	100	100	125 (4)	25	2
M105		100	125	NR	35	1/0
	M105R	100	125	175 (4)	35	1/0
M155		160	175	NR	50	3/0
	M155R	160	175	250 (4)	50	3/0
M210		200	250	NR	95	300MCM
	M210R	200	250	300 (4)	95	300MCM
M350		355	400	NR	150	(5)
	M350R	355	400	550 (4)	150	(5)
M420		450	500	NR	185	(5)
	M420R	450	500	700 (4)	185	(5)
M550		560	700	NR	300	(5)
	M550R	560	700	900 (4)	300	(5)
M700		630	900	NR	2×185	(5)
	M700R	630	900	1000 (4)	2×185	(5)
M825		800	1000	NR	2×240	(5)
	M825R	800	1000	1200 (4)	2×240	(5)
M900		1000	1200	NR	2×240	(5)
	M900R	1000	1200	2×700 (4)	2×240	(5)
M1200		1250	2×700	NR	2×400	(5)
	M1200R	1250	2×700	2×900 (4)	2×400	(5)
M1850		2000	2×1200	NR	3×400	(5)
	M1850R	2000	2×1200	2×1000 (4)	3×400	(5)

(1) DC fuses must be fast semiconductor type.

Rated voltage -
for 380 V supply - 500 V DC
for 480 V supply - 700 V DC
for 525 V supply - 700 V DC
for 660 V supply - 1000 V DC
(2) The cable sizes are for 3 -core (3-wire) and 4-core (4-wire) pvcinsulated armoured (conduited) cable with copper conductors, and laid in accordance with defined conditions.
(3) Typical wire gauge sizes based on $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ ambient, $1.25 \times$ rated current, $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ copper wire with no more than 3 conductors in a conduit or raceway.
Branch circuit protection must be provided by the user All wiring must conform to NEC Art. 310 and applicable electrical codes.
(4) In applications where load inertia is low and regeneration infrequent, DC fuses may not be needed.
(5) Refer to NEC Table 310-16 for wire sizes.

NR Not required

Mentor thyristors $\mathrm{I}^{2} \mathrm{t}$ values for fusing

Drive Model	480V	$\begin{gathered} \mathrm{I}^{2} \mathrm{t} \\ \left(\mathrm{k} A^{2} \mathrm{~s}\right) \end{gathered}$	525 V	$\begin{gathered} \mathrm{I}^{2} \mathrm{t} \\ \left(\mathrm{k} A^{2} \mathrm{~s}\right) \end{gathered}$	660V	$\begin{gathered} \mathrm{I}^{2} \mathrm{t} \\ \left(\mathrm{k} A^{2} \mathrm{~s}\right) \end{gathered}$
M25/M25R	Part no 2435-0026	1.03	Part no 2435-2616	0.73		
M45/M45R	Part no 2435-0049	4.75	Part no 2435-9116	14.52		
M75/M75R	Part no 2435-0116	19.1	Part no 2435-9116	14.52		
M105/M105R	Part no 2435-0130	108	Part no 2435-1326	47		
M155/M155R	Part no 2435-0130	108	Part no 2435-1326	47		
M210/M210R	Part no 2435-0130	108	Part no 2435-1326	47		
M350/M350R	Part no 2436-7310	149	Part no 2436-7161	370	Part no 2436-7162	370
M420/M420R	Part no 2436-7310	149	Part no 2436-7161	370	Part no 2436-7162	370
M550/M550R	Part no 2436-7141	370	Part no 2436-7161	370	Part no 2438-3123	370
M700/M700R	Part no 2438-3223	370	Part no 2438-3117	370	Part no 2438-3123	370
M825/M825R	Part no 2438-3223	370	Part no 2438-3117	370	Part no 2438-3123	370
M900/M900R	Part no 2438-3234	5126	Part no 2438-3236	4250	Part no 2438-3236	4250
M1200/M1200R	Part no 2438-3234	5126	Part no 2438-3236	4250	Part no 2438-3236	4250
M1850/M1850R	Part no 2438-3234	5126	Part no 2438-3236	4250	Part no 2438-3236	4250

4.2.3 Ventilation and weight

Drive type \& model		Ventilation			Approx. weight	
Single Quadrant	Four Quadrant	Type	Flow			
			$\begin{gathered} \mathrm{m}^{3} \\ \min ^{-1} \end{gathered}$	$\begin{gathered} \mathrm{ft}^{3} \\ \min ^{-1} \end{gathered}$	kg	lb
M25, M45, M75		1	-	-	10	22
	M25R, M45R, M75R	1	-	-	11	24
M105		1	-	-	14	31
	M105R	1	-	-	15	33
M155, M210	M155R, M210R	2	2	70	21	46
M350, M420		3	7.6	270	22	48
	M350R, M420R	3	7.6	270	23	51
M550		3	17	600	22	48
	M550R	3	17	600	23	51
M700, M825		3	17	600	27	59
	M700R, M825R	3	17	600	30	66
M900, M1200, M1850		4	20	700	70	154
	M900R, M1200R, M1850R	4	20	700	120	264

NOTE

Supply voltages for ventilation fans are as follows:-

Type of Ventilation

1 Natural convection		
2 Forced ventilation	M155 - M210	24 V internally supplied
3 Forced ventilation	M350 - M825	$110 \mathrm{~V} / 220 \mathrm{~V}$ dual voltage single phase
4 Forced ventilation	M900 - M1850	415 V AC three phase

4.2.4 Losses

Losses are equivalent to 0.5% of Drive rated output across the range. The following table lists the losses in kW and HP for all models, at 400 V armature voltage.

Drive type \& model		Typical Single Quadrant		Four Quadrant	Losses	
		kW	HP	kW	HP	
M25	M25R	7.5	10	0.038	0.05	
M45	M45R	15	20	0.075	0.1	
M75	M75R	30	40	0.15	0.2	
M105	M105R	37.5	50	0.19	0.25	
M155	M155R	56	75	0.28	0.37	
M210	M210R	75	100	0.38	0.5	
M350	M350R	125	168	0.63	0.83	
M420	M420R	150	201	0.75	1	
M550	M550R	200	268	1.0	1.3	
M700	M700R	250	335	1.3	1.7	
M825	M825R	300	402	1.5	2	
M900	M900R	340	456	1.7	2.3	
M1200	M1200R	450	603	2.3	3	
M1850	M1850R	750	1005	3.8	5	

The field rectifier is protected by fuses FS1, FS2, FS3 on the power boards.

Before attempting to replace fuses FS1, FS2, FS3 the supply voltages must be removed from the Drive and left removed for at least 2 minutes.

4.2.5 Recommended Line Reactors

To avoid electrical interference and dI/dt stress, do not operate without line reactors. The following table gives typical values to achieve a notch depth of 50\%. Where a specific notch depth is required, values must be calculated. Refer to IEC 61800-3 for details of calculation of notching depth.

Drive type \& model	Line reactors La, Lb, Lc $(\mu \mathrm{H})$
M25, M25R	200
M45, M45R	200
M75, M75R	100
M105, M105R	100
M155, M155R	75
M210, M210R	75
M350, M350R	35
M420, M420R	27
M550, M550R	25
M700, M700R	23
M825, M825R	19
M900, M900R	17
M1200, M1200R	13
M1850, M1850R	8.6

4.2.6 Field Current Rating

Drive type \& model	Field Current Rating (A)	$\begin{gathered} \text { Fuse } \\ \text { FS1, FS2, FS3 } \end{gathered}$
M25, M25R	8 regulated	CT Part number 3535-0010
M45, M45R	8 regulated	
M75, M75R	8 regulated	
M105, M105R	8 regulated	
M155, M155R	8 regulated	
M210, M210R	8 regulated	
M350, M350R	10	CT Part number 3535-0020
M420, M420R	10	
M550, M550R	10	
M700, M700R	10	
M825, M825R	10	
M900, M900R	20	
M1200, M1200R	20	
M1850, M1850R	20	

5 Mechanical Installation

5.1 Dimensions

Principal dimensions are shown in Figs. 8 to 10. Cut-out and drilling dimensions for mounting a Drive with the heatsink projecting through a panel into the space behind are shown in Figs. 8 and 9.

5.2 Mounting

The Drive enclosure conforms to international enclosure specification IP00 and is suitable for mounting in NEMA-rated enclosures.

5.2.1 Location

The Drive should be installed in a place free from dust, corrosive vapors and gases, and all liquids. Care must also be taken to avoid condensation of vaporized liquids, including atmospheric moisture.

Mounting arrangements \& ventilation

If the Drive is to be located where condensation is likely to occur when it is not in use, a suitable anticondensation heater must be installed. The heater must be switched OFF when the Drive is turned on. An automatic changeover switching arrangement is recommended.
Mentor II Drives are not to be installed in classified Hazardous Areas unless correctly mounted in an approved enclosure and certified. (Refer also to Section 6.1.2, Hazardous Areas.)

5.2.2 Mounting and Cooling

There are certain variations across the Mentor II range of Drives, in respect of mounting and cooling arrangements. With most models there is the option of surface or through-panel mounting. The higher-rated Drives require forced ventilation and can optionally be supplied complete with ducted cooling fans.

Alternatively, the installer may arrange to use separately-provided ducted cooling air. Air flow requirements are shown in Table 3. The variants are summarized in the following table.

Drive model	Mounting		Ventilation	Heat Sink
	Surface	Through-panel		
M25 to M75	Yes	Yes	Natural	Isolated* *
M25R to M75R	Yes	Yes	Natural	Isolated *
M105 and M105R	Yes	Yes	Natural	Isolated *
M155 and M155R	Yes	Yes	Forced (fan built in)	Isolated *
M210 and M210R	Yes	Yes	Forced (fan built in)	Isolated *
M350 to M550	Yes (1)	Yes (2)	Forced	LIVE
M350R to M550R	Yes (1)	Yes (2)	Forced	LIVE
M700 and M825	Yes (1)	Yes (2)	Forced	LIVE
M700R and M825R	Yes (1)	Yes (2)	Forced	LIVE
M900 to M1850	Only		Forced (3)	LIVE (4)
M900R to M1850R	Only		Forced (3)	LIVE (4)

* Isolated heat sinks must be earthed (grounded) for safety.

A terminal is provided.

(1) Surface-mounting requires the optional fan ducting, with integral fans, mounting flanges and earthing (grounding) stud.
(2) Adequate forced ventilation must be provided.
(3) A suitable fan can be supplied as an optional extra.
(4) Enclosed.

5.3 Cooling and Ventilation

5.3.1 Enclosure minimum dimensions

Care must be taken that the enclosure in which the Drive is installed is of adequate size to dissipate the heat generated by the Drive. A minimum clearance of 100 mm (4in) all around the Drive is essential, Fig. 6. All equipment in the enclosure must be taken into account in calculating the internal temperature.

A minimum distance of 100 mm (4 in) from adjacent contactors, relays and other equipment is required to allow free circulation of cooling air

Fig 6

5.3.2 Effective heat-conducting area

The required surface area A_{e} for an enclosure containing equipment which generates heat is calculated from the following equation -

$$
\mathrm{A}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{l}}}{\mathrm{k}\left(\mathrm{~T}_{\mathrm{i}}-T_{\mathrm{amb}}\right)}
$$

where
$A_{e}=$ Effective heat-conducting area, in m^{2}, equal to the sum of the areas of the surfaces which are not in contact with any other surface.
$P_{1} \quad=$ Power loss of all heat-producing equipment in Watts.
$T_{i}=$ Max. permissible operating temperature of the Drive in ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{amb}}=$ Maximum external ambient temperature in ${ }^{\circ} \mathrm{C}$.
$k=$ Heat transmission coefficient of the material from which the enclosure is made.

EXAMPLE:

Calculation of the size of an IP54 (NEMA 12) enclosure for a Drive size M210

The worst case is taken as the basis of the example, for which the following conditions are assumed -

- The installation is to conform to IP54 (NEMA 12), which means that the Drive and its heatsink are to be mounted wholly within the enclosure, and that the enclosure is virtually sealed and without any ventilation of the air inside. Heat can escape only by conduction through the skin of the enclosure, which is cooled by conduction, convection and radiation to the external air.
- The enclosure is to stand on the floor and against a wall, so that its base and back surfaces cannot be considered to play any part in the cooling process. The effective heatconducting area A_{e} is provided by the top, front, and two sides only, Fig. 7.
- The enclosure is to be made of 2 mm (0.1 in) sheet steel, painted.
- The maximum ambient temperature is $25^{\circ} \mathrm{C}$.

To find the effective heat-conducting area

The values of the variables appropriate to the above specification are:

$$
\mathrm{P}_{\mathrm{I}}=400 \mathrm{~W} \text { (losses) }
$$

NOTE

It is essential to include any other heatgenerating equipment in the value for Pl .

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{i}}=40^{\circ} \mathrm{C} \text { (for all Mentor II Drives) } \\
& \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\
& \mathrm{k}=5.5 \text { (typical value for } 2 \mathrm{~mm} \text { (0.1in) } \\
& \text { sheet steel, painted) } \\
& \mathrm{A}_{\mathrm{e}}=\frac{400}{5.5(40-25)} \\
& =4.85 \mathrm{~m}^{2} \text { (} 52 \mathrm{ft} . \mathrm{sq} \text {.) }
\end{aligned}
$$

To find the dimensions of the enclosure

If an enclosure is to be fabricated to suit the installation, there is a free choice of dimensions. Alternatively, it may be decided to choose an enclosure from a range of standard products. Either way, it is important to take into account the dimensions of the Drive, and the minimum clearance of 100 mm (4in) round it (Fig. 6).

The procedure is to estimate two of the dimensions - the height and depth, for example - then calculate the third, and finally check that it allows adequate internal clearance.

The effective heat-conducting area of an enclosure as illustrated in Fig.7, located on the floor and against one wall is:

$$
A_{e}=2 A B+A C+B C
$$

where A is the enclosure height, B is the depth, front to back, and C the width.

Suppose the enclosure height A is 2.2 m (7 ft 3 in), and the depth B is $0.6 \mathrm{~m}(2 \mathrm{ft})$, as a first estimate. The actual figures chosen in practice will be guided by available space, perhaps, or standard enclosure sizes.

Since A_{e}, A, and B are known, the dimension to be calculated is C. The equation needs to be rearranged to allow C to be found, thus:

$$
\begin{aligned}
A_{e}-2 A B & =C(A+B) \\
\text { or, } \quad C & =\frac{A_{e}-2 A B}{A+B} \\
& =\frac{4.85-(2 \times 2.2 \times 0.6)}{2.2+0.6} \\
& =\frac{4.85-2.64}{2.8} \\
& =0.8 \mathrm{~m}(2 \mathrm{ft} 7 \mathrm{in}) \text { approx. }
\end{aligned}
$$

Clearance on either side of the Drive must be checked. The width of the Drive is 250 mm (10in). Clearance of 100 mm (4in) is required on either side. So the minimum internal width of the enclosure must be 450 mm , or 0.45 m (18in). This is within the calculated width, and therefore acceptable. However, it allows limited space for any equipment to either side of the Drive, and this may be a factor in deciding the proportions of a suitable enclosure. If so, modify the calculated value of C to allow for other equipment, and re-calculate either of the other two dimensions by the same method.

If an enclosure is to be selected from a stock catalogue, the corresponding surface area should be not less than the figure calculated above for A_{e}.

As a general rule, it is better to locate heatgenerating equipment low in an enclosure to encourage internal convection and distribute the heat. If it is unavoidable to place such equipment near the top, consideration should be given to increasing the dimensions of the top at the expense of the height, or to installing internal circulation fans with Drives which are not equipped with a built-in fan to ensure air circulation.

Enclosure ventilation

If a high Ingress Protection rating is not a critical factor, the enclosure can be smaller if a ventilating fan is used to exchange air between the inside and the outside of the enclosure.

To calculate the volume of ventilating air, V , the following formula is used:

$$
V=\frac{3.1 P_{l}}{T_{i}-T_{a m b}}
$$

where V is the required air flow in $\mathrm{m}^{3} \mathrm{~h}^{-1}$.

To find the ventilation required for an M210 Drive

$$
\begin{gathered}
\mathrm{P}_{\mathrm{I}}=400 \mathrm{~W} \\
\mathrm{~T}_{\mathrm{i}}=40^{\circ} \mathrm{C} \text { (for Mentor II Drives) } \\
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { (for example) } \\
\text { Then } \mathrm{V}=\frac{3.1 \times 400}{40-25} \\
=83 \mathrm{~m}^{3} \mathrm{~h}^{-1}\left(2930 \mathrm{ft}^{3} \mathrm{~h}^{-1}\right)
\end{gathered}
$$

NOTE
The diagram shows terminals A1 and A2 for FOUR-QUADRANT drives only.
For SINGLE-QUADRANT drives, the locations of A1 and A2 are REVERSED.

UNIT	TERMINALS A1, A2
M25	Q
M25R	Q
M45	Q
M45R	Q
M75	Q
M75R	Q
M105	Q
M105R	P
M155	Q
M155R	P
M210	Q
M210R	P

TERMINALS L1, L2, L3 - M8 stud

TERMINALS A1, A2
and Earth (ground)

- drilled for M8
($5 / 16$ in) bolt

Not to Scale
Metric dimensions are exact Inch dimensions are calculated

Units M25 and M25R
to M210 and M210R (incl) are suitable for both Surface Mounting and Through-Panel Mounting

Fig 8

This page is intentionally blank

6 Electrical Installation

6.1 Installation Criteria

6.1.1 Safety

The voltages present in the supply cables, the output cables and terminals, the control power supply wiring and in certain internal parts of the Drive are capable of causing severe electric shock and may be lethal.

Electric Shock Risk!

Whenever the Drive has been connected to the main AC supply system it must be DISCONNECTED and ISOLATED before any work is done that requires the removal of a cover. A period of 2 minutes MUST elapse after isolation to allow the internal capacitors to discharge fully. Until the discharge period has passed, dangerous voltages may be present within the module.
Persons supervising and performing electrical installation or maintenance must be suitably-qualified and competent in these duties, and should be given the opportunity to study, and to discuss if necessary, this Users Guide before work is started.

Ingress Protection

The Drive enclosure conforms to international enclosure specification IPOO and is suitable for mounting in NEMA-rated enclosures. It is necessary to consider the location of and access to the Drive unit itself in the light of local safety regulations applicable to the type of installation.

6.1.2 Hazardous areas

The application of variable speed Drives of all types may invalidate the hazardous area certification (Apparatus Group and/or Temperature Class) of Ex-protected (externallyprotected) motors. Approval and certification should be obtained for the complete installation of motor and Drive. (Refer also to Location, Section 5.2.1)

6.1.3 Earthing (Grounding)

Safety

Drives with isolated heat sinks require that the heat sink is earthed (grounded) for safety. (Refer also to Mounting, Section 5.2) It is recommended that any metal components which could accidentally become live are solidly earthed (grounded).
Earth (ground) impedance must conform to the requirements of local industrial safety regulations and should be inspected and tested at appropriate and regular intervals.

6.1.4 Control System Earthing (Grounding)

External AC control circuits, for example, contactors, should be supplied (from any two phases of the supply) through an isolating transformer equipped with an earthing (grounding) shield (screen) between the primary and secondary as shown in Figs. 12 and 13. The control wiring should be connected to the same earthing (grounding) point if possible, or arrangements made to ensure that the earth (ground) loop impedance complies with an authorized code of practice.

6.1.5 Location

The location of principal components is shown in Fig. 11.

for links (jumpers) LK, switches, potentiometers, and external control terminals - refer to Fig 14

Location of principal components
Fig 11

6.2 Power Connections

Refer to Figs. 12 and 13.

Fig 12

Fig 13

Access to the power terminals of the smaller Drives is gained by opening the front cover, which is secured by two captive screws, one at each upper corner, and hinged at the bottom (Fig. 11). The higher-rated models have externally-accessible terminal lugs.

6.2.1 Motor Rotation

Check that the direction of rotation is as required as soon as the Drive is first turned on. If not, exchange the connections to the armature or the field (but not both). If an encoder or tachogenerator (tachometer) feedback is installed, the sense of the signals to the Drive must be reversed to correspond.

The Drive control options can alternatively be used to reverse the direction of rotation.

6.2.2 Overvoltage suppression

The Mentor II Drive contains overvoltage suppression components to protect the thyristors from high voltage pulses (transients or spikes) appearing between the phases because of lightning strikes etc. It is also designed to withstand pulses of over 4 kV between the phases and ground.

In regions of high lightning activity, especially where grounded delta supplies are in use, it is recommended that additional protection should be fitted externally between the phases and ground. This would typically be by using MOVs (varistors).

One possible arrangement is shown in the diagram below:

The AC voltage rating of the MOVs can be up to 550 V . This is suitable for all supply voltages up to $660 \mathrm{~V}+10 \%$.

Ensure that the MOVs are rated for surge currents of at least 3 KA for the standard surge ($1.2 / 50 \mu \mathrm{~s}$ voltage or $8 / 20 \mu$ s current). The wires to the MOVs should be short (eg less than $6 \mathrm{in} / 15 \mathrm{~cm}$) to avoid additional over-voltage caused by wiring inductance with the fast-rising current.

MOVs approved by a safety agency such as UL are recommended, and in some regions this is essential for legal or insurance reasons.

6.2.3 Overvoltage category and voltage surge suppression

The Mentor II Drive contains comprehensive voltage surge suppression and co-ordinated electrical spacings. It is resistant to surges of 4 kV between lines and from lines to ground.

The 480 V version of the Drive may be connected to a supply system of overvoltage category III (as specified in IEC664-1). This means that it is suitable for permanent connection to any power system other than an outdoor installation. For outdoor installation it is recommended that additional overvoltage protection be provided. The 525 V and 660 V versions may be connected to a supply system of overvoltage category II. For permanent connection directly to industrial supply systems it is necessary to provide additional surge suppression between lines and ground. Suitable suppression devices using metal oxide varistors (MOVs) are widely available. This is not required where the Drive is provided with an isolation transformer.

The status relay contacts are designed for overvoltage category II at 240 V .

Overvoltage categories are as follows:

I	Protected circuits with overvoltage surge suppression
II	General building power supplies for use by electrical appliances
III	Fixed installations with permanent supply connection
IV	Building power incomer (eg utility meter etc.)

6.3 Current Feedback Burden Resistors

To allow the use of a motor which has a lower rating than the Drive, the current feedback has to be rescaled by changing the burden resistors R234 and R235 (or in the case of Drive size M350 and above, the three resistors R234, R235 and R236) mounted on the power board. The following equations provide the value of the appropriate resistance. Resistors are in parallel.

Where Imax is 150% of the rated full load current of the motor:

For Drives M25 up to M210R (up to 210A DC output) and PCBs MDA75, MDA75R, MDA 210, and MDA210R:

$$
\text { Rtotal }=\frac{400}{\operatorname{Imax}}
$$

For Drives M350 and above, and PCB MDA6, three burden resistors, R234, R235 and R236 are used in parallel:

$$
\text { Rtotal }=\frac{1600}{I \operatorname{Imax}}
$$

Worked Example of Current Feedback Burden Resistor Values

For an M350 Drive:
Full load current output (Table 1) is 350A
Maximum current is $350 \times 1.5 \mathrm{amps}$
Total burden resistance:

$$
\begin{aligned}
& \text { Rtotal }=\frac{1600}{350 \times 1.5}=3 \Omega \\
& \frac{1}{\text { Rtotal }}=\frac{1}{\text { R234 }}+\frac{1}{\mathrm{R} 235}+\frac{1}{\mathrm{R} 236}
\end{aligned}
$$

If R236 is given a high value, say 390Ω, then:

$$
\frac{1}{3}-\frac{1}{390}=\frac{1}{\mathrm{R} 234}+\frac{1}{\mathrm{R} 235}
$$

and :

$$
\frac{1}{R 234}+\frac{1}{R 235}=0.33076 \Omega
$$

From data tables of standard resistor values, find two which give the closest approximation.

For example, if :

$$
\text { R234 }=5.6 \Omega \text { and R235 }=6.8 \Omega \text {, }
$$

then -

$$
\begin{aligned}
\frac{1}{5.6}+\frac{1}{6.8} & =0.32563 \Omega \\
& \approx 0.33076 \Omega
\end{aligned}
$$

The power rating of each burden resistor in turn is calculated from :

$$
\operatorname{Power}(\mathrm{W})=\frac{\mathrm{V}^{2}}{\mathrm{R}}
$$

and where the voltage across the three resistors in parallel is 1.6 V , power absorbed is :

$$
\begin{aligned}
& \text { R234 } \frac{1.6^{2}}{5.6}=0.456 \mathrm{~W} \\
& \text { a } 0.5 \mathrm{~W} \text { or } 0.6 \mathrm{~W} \text { rating is adequate } \\
& \text { R235 } \frac{1.6^{2}}{6.8}=0.376 \mathrm{~W} \\
& \text { a } 0.5 \mathrm{~W} \text { rating is adequate } \\
& \text { R236 } \frac{1.6^{2}}{390}=6 \mathrm{~mW} \\
& \text { a } 0.25 \mathrm{~W} \text { rating is adequate }
\end{aligned}
$$

NOTE

If the current ripple measured at terminal 11 is less than 0.6 V p-p, it is possible to increase the burden resistors (provided that version V5.1.0 (or later) software is used) by a factor of 1.6. If the burden resistors are increased parameter 05.29 must be set to 1 .

The burden resistor values should not be increased by the factor of 1.6 if the current ripple measured at terminal 11 is greater than 0.6 V as the Drive will operate better with the standard values.

6.4 Control Connections

Refer to Figs. 12, 13, 14, and 15.
The Terminals index.
The Classified list of terminals.

Isolation
The control circuits and terminals are isolated from the power circuits only by basic insulation to IEC664-1. The installer must ensure that all external control circuits are separated from human contact by at least one layer of insulation rated for use at the AC supply voltage.

Location of principal components on PCB MDA2B issue (revision) 2
Fig 14

1 Terminals index

Terminals are located on PCB MDA2B, Fig 11 and Fig 14

Terminal		Description	Type	Programmable
Block	Number			
TB1	1	+10V	Reference supply	
	2	-10V	Reference supply	
	3	Speed reference	Analog input	Yes
	4, 5, 6, 7	General purpose GP1, GP2, GP3, GP4	Analog inputs	Yes
	8	Motor thermistor (thermal)	Analog input	
	9	Tachogenerator (tachometer) negative	Analog input	
	10	Tachogenerator (tachometer) positive (0V)	Analog input	
TB2	11	Current	Analog output	
	12	DAC1	Analog output	Yes
	13	DAC2	Analog output	Yes
	14	DAC3	Analog output	Yes
	$\begin{gathered} 15,16,17 \\ 18,19 \end{gathered}$	ST1, 2, 3, 4, 5	Open collector outputs	Yes
	20	OV		
TB3	21	F1 Run permit	Digital input	
	22	F2 Inch reverse	Digital input	Yes
	23	F3 Inch forward	Digital input	Yes
	24	F4 RUN reverse (latched)	Digital input	Yes
	25	F5 RUN forward (latched)	Digital input	Yes
	$\begin{gathered} 26,27,28, \\ 29,30 \end{gathered}$	F6, 7, 8, 9, 10	Digital inputs	Yes
TB4	31	ENABLE	Digital input	
	32	RESET	Digital input	
	33	+24V relay supply		
	34	Pole	Relay output (ST6)	Yes
	35	Normally closed contact	Relay output (ST6)	Yes
	36	Normally open contact	Relay output (ST6)	Yes
	37	Pole	Drive ready relay	
	38	Normally closed contact	Drive ready relay	
	39	Normally open contact	Drive ready relay	
	40	OV		

PL5

Number	Function	Number	Function	Number	Function
1	+10V	11	Current	21	F1
2	-10 V	12	DAC1	22	F2
3	Speed ref	13	DAC2	23	F3
4	GP1	14	DAC3	24	F4
5	GP2	15	ST1	25	F5
6	GP3	16	ST2	26	F6
7	GP4	17	ST3	27	F7
8	Thermistor (thermal switch)	18	ST4	28	F8
9	NC	19	ST5	29	F9
10	$0 V$	20	$0 V$	30	F10
				31	ENABLE
				32	RESET
				33	External 24V
				0V	

2 Terminals classified

Analog outputs

Terminal block TB2, terminals 11 to 14 inclusive. Armature current indication, 5 mA Drive capability. Three undedicated outputs, 5 mA Drive capability. Output voltage range -10 V to +10 V .

Analog inputs

Terminal block TB1, terminals 3 to 10 inclusive.
Five undedicated inputs, impedance $100 \mathrm{k} \Omega$. Input voltage range -10 V to +10 V .
Dedicated inputs for motor thermistor (thermal) or thermostat (trip level $3 \mathrm{k} \Omega$, reset $1.8 \mathrm{k} \Omega$ approx.) and tachogenerator (tachometer) feedback.

Digital outputs

Terminal block TB2, terminals 15 to 19 inclusive.
Terminal block TB4, terminals 34 to 39 inclusive.
Five undedicated open-collector outputs.
Maximum current-sinking capability 100 mA .
One undedicated relay output.
Dedicated Drive ready relay output.
Maximum relay current at:

250V AC	2.2 A
$110 \mathrm{~V} A C$	5 A
5 V DC	5 A

Digital inputs

Terminal block TB3, terminals 21 to 30 inclusive. Terminal block TB4, terminals 31, 32.
Nine undedicated inputs, impedance $10 \mathrm{k} \Omega$.
Drive enable signal - operates directly on the output gate-pulse circuits for safety. Delay 30ms between removal of enable signal and inhibit firing. Drive enable control is internally interlocked with fault detection signals for maximum safety.
Run Permit
Drive reset input for external control. Input logic selectable - active high or active low. Circuit voltage +24 V .
Provision for inputs from two encoders.
Run Forward and Run Reverse, latched.

Programmable outputs

Terminal block TB2

Terminals 12 to 14 inclusive Analog
Terminals 15 to 19 inclusive Open collector (digital)

Terminal block TB4

Terminals 34 to 36 inclusive Relay

Programmable inputs

Terminal block TB1
Terminals 3 to 7 inclusive Analog
Terminal block TB3
Terminals 22 to 30 inclusive Digital

Encoder (pulse tachometer) -

 Reference \& FeedbackChannel A must lead channel B for forward rotation.

Connections for:

Pin	Encoder		Serial Comms.
	Reference PL4	Feedback SK3/PL3	PL2
1	OV	OV	0V isolated
2	NC	Supply	/TX
3	A	A	/RX
4	/A	/A	NC
5	B	B	NC
6	/B	/B	TX
7	NC	NC	RX
8	C	C	NC
9	$/ C$	/C	NC
10	OV	OV (NOT	
SK3)			

* PL3 is connected in parallel with SK3

PL4 is a 10-way header for the Reference Encoder.
SK3 is a 9-way D-type female socket for the
Feedback Encoder.

Fig 15

This page is intentionally blank

7 Operating Procedures

7.1 Keypad and Displays

The keypad serves two purposes:
1 It allows the operator to configure the Drive to match particular applications and to change its behavior in a variety of ways, for example by altering the times of acceleration and deceleration, presetting levels of protection, and so on.

Subject to safety considerations, adjustments may be made with the Drive running or stopped. If running, the Drive will respond immediately to the new setting.

2 It provides full information about the settings and the operational status of the Drive, and extensive diagnostic information if the Drive trips.

For parameter adjustment, the keypad has five keys, Fig. 17. Use the LEFT or RIGHT keys to select a Menu (functional group of parameters). The menu number appears to the left of the decimal point in the Index window.

Use the UP or DOWN keys to select a Parameter from the chosen menu. The parameter number appears to the right of the decimal point in the Index window, and the value of the chosen parameter appears in the Data window.

Press the MODE key once to access the displayed parameter value for adjustment. The value flashes if access is permitted.

Use the UP or DOWN keys to adjust the value. To adjust rapidly, press and hold a key.

Press the MODE key again to exit from the adjustment mode.

Store (make permanently effective) parameter values after changes, otherwise the new values will be lost when the Drive is powered-off. To store, set Parameter $00=1$ and press RESET.

DISPLAYS

1 Index

The lower four-digit display indicates menu number to the left of the (permanent) decimal point, and parameter number to the right.

2 Data

The upper four-digit display indicates the value of a selected parameter. The present value of each parameter in turn appears in the data display as parameter numbers are changed. Numerical parameters have values in ranges of 000 to 255,000 to +1999 , or 000 to 1000 . Refer to Chapter 6 for parameter unit values, e.g. volts, rpm, etc.

Bit parameter values are displayed as 0 or 1 , preceded by ab . The first digit for integer parameters (0 to 255) is a

3 Status Indicators

Nine LED's to the right of the parameter data and index panels present information, continuously updated, about the running condition of the Drive and enable basic information to be seen at a glance.

LED Illuminated	Information
Drive ready	The Drive is switched on and is not tripped
Drive ready flashing	The Drive is tripped
Alarm flashing	The Drive is in an overload trip condition or is integrating in the I x t region
Zero speed	Motor speed < zero speed threshold (programmable)
Run forward	Motor running forward
Run reverse	Motor running in reverse
Bridge 1	Output bridge 1 is enabled
Bridge 2	Output bridge 2 is enabled. (Inactive in 1-quad Drives)
At speed	Motor running at the speed demanded by the speed reference
Current limit	Drive running and delivering maximum permitted current

7.2 Setting Up to Run

Install the Drive and make electrical power and control connections in accordance with Chapter 8, and Figs. 12, 13, 14. Before attempting to run the Drive, there are further connections and settings some optional - to make or to be considered.

These are summarized below:

Action	Reference
Preset the link (jumper)LK1 and switches	7.2 .1 below
Preset the adjustable potentiometer if tachogenerator (tachometer) feedback selected	7.2 .2 below
Adjust operating parameters as appropriate to the application	Section 8.1
Autotune current loop	parameter 05.09
Adjust field feedback scaling	parameter 06.11
Allocate security code optional	Section 8.2

7.2.1 Link LK1 (Jumper) and Switches

The link LK1 (jumper) and switch block are located on PCB MDA2B (Fig. 14), accessible when the lower, snap-on front cover is removed (Fig. 11).

Control	Purpose	
SW1A	Logic input polarity. MDA2B is marked POS. and NEG. to indicate the positions of SW1A. Pos. $=24 \mathrm{~V}$ Neg. $=0 \mathrm{~V}$.	POWER-OFF BEFORE CHANGING
SW1H	60 V to 300 V	Tachogenerator (tachometer) feedback range*
SW1G	50 V to 200 V	Tachogenerator (tachometer) feedback range*
SW1F	10 V to 50 V	Tachogenerator (tachometer) feedback range*
LK1	Tachogenerator (tachometer) potentiometer calibration adjustable link (jumper)	
SW1D	+15V	Encoder supply voltage selector*
SW1C	+12V	Encoder supply voltage selector*
SW1B	+5V	Encoder supply voltage selector*

* ONE ONLY to be selected

7.2.2 Potentiometer RV1

Refer to Fig. 14.

Pot. Purpose

RV1 Tachogenerator (tachometer) feedback adjustment

Procedure for Adjustment

1 Select the appropriate tachogenerator range using SW1.

2 Set LK1 in the ADJUST position.

3 Adjust RV1 until the value of parameter 03.02 (Speed Feedback) is:

$$
03.02=\frac{10000}{\operatorname{Vmax}}
$$

where Vmax $=$ Tach. voltage at full speed.

4 Set LK1 in the FEEDBACK position and fine tune RV1 with the motor running at between half to three-quarter speed.

7.3 Getting Started

Essential data

Before attempting to tune a Mentor II to operate a particular load, collect the following information from the nameplate of the motor, manufacturers data, and other sources.

Data values are given here for the sake of the worked examples which follow.

- Armature full load amps	67 A	
- Armature voltage	500 V DC	
- Field current	1.85 A	
- Field voltage	300 V DC	
- Base speed	1750 rpm	
- Maximum permissible speed		
	with weakened field	2500 rpm
-Mentor II Drive model number	M 75	

- The method of delivering speed feedback data to the Drive various examples are considered below

WORKED EXAMPLES

7.3.1 Armature current

Current Limit

Current limit is set in parameter 04.05 only if the Drive is not regenerative, and in both 04.05 and 04.06 if it is regenerative.

An M75 Drive is rated at 75A full load current. The default value (1000) of parameter 04.05 (and 04.06) allows a maximum current limit of 150% of full load current, which would be $1.5 \times 75=112.5 \mathrm{~A}$.

Full load current for the selected motor is 67A, and if its maximum current limit is 150%, which is normal, the maximum current that it may experience is 100.5 A .

Accordingly, the Drive must be adjusted to correspond, or the motor will be damaged.

Calculate the ratio from :

$$
\begin{aligned}
& \text { Motor full load current }=\frac{67}{75}=0.89 \\
& \text { Drive rating }
\end{aligned}
$$

The full-scale value of the Current Limit parameters, corresponding to 150% of full load current of the motor, is 1000 . The actual setting of the Current Limit parameters is, therefore :

$$
1000 \times 0.89=890
$$

$$
\text { Set } \quad 04.05=890 .
$$

If the Drive system is regenerative,

$$
\text { set } \quad 04.06=890 \text { also. }
$$

NOTE

Current resolution

The rating of the selected Drive is typically higher than the rating of the motor, but it should not be very much higher. It would not be prudent to select a Drive-to-motor ratio less than 2/3 (current limit parameter setting 600). Current feedback resolution at any lower ratio would be unable to give good current loop control.

Although full scale resolution can be achieved by changing the burden resistors of the Drive current transformer, this would create a nonstandard Drive that is not a stock item. The risk is that the Drive might be replaced by a standard Drive of the same nominal rating; the motor could be permanently damaged. Special modifications of this nature should always be supported by thorough documentation, and the non-standard Drive should itself be indelibly tagged in some way.

Current Overload I x t

The threshold at which I x t integration begins in parameter 05.06 is typically 105%.
The parameter full-scale value is 1000 , corresponding to 150%, so that :

$$
05.06 \text { threshold }=\frac{105}{150} \times 1000=700
$$

This value, as with the Current Limit, must be adjusted to take account of the actual motor full load amps by applying the factor already calculated for Current Limit, namely, 0.89. The actual value required for this motor and Drive combination is therefore :

$$
\begin{aligned}
700 \times 0.89 & =623 \\
\text { Set } 05.06 & =623 .
\end{aligned}
$$

Access to these parameters

To gain access to these parameters and set the values select parameter 00 and enter 200.

This permits access to all required parameters.

7.3.2 Speed feedback

Armature Voltage Feedback

For armature voltage feedback, set parameter $03.13=1$.

For practical applications a small tolerance of 2% or 3% above the nameplate voltage should be allowed. For an armature voltage of 500 V , set parameter $03.15=510$ or 520 .

Analog Speed Feedback

For analog tachogenerator (tachometer) feedback, set parameter $03.13=0$ (default setting).

The default values of the speed loop proportional and integral gains are usually satisfactory for analog feedback.

Depending on the application the characteristic behavior of the load adjustment of the speed loop
gains may be needed to obtain the optimum dynamic performance and speed-holding.

Encoder (pulse tachometer) Speed Feedback

For encoder (pulse tachometer) feedback, set parameter $03.12=1$.

The scaling parameter, 03.14, must be adjusted to correspond with the encoder PPR (pulses per revolution) and the intended maximum speed of the motor in rpm :

$$
03.14=\frac{750 \times 10^{6}}{\text { PPR } \times \operatorname{Max} . \mathrm{rpm}}
$$

For example :

Encoder (pulse tach.)	240 PPR
Motor rated max. speed	1750 rpm
Motor max. speed required	1710 rpm

$$
03.14=\frac{750 \times 10^{6}}{240 \times 1710}=1827
$$

NOTE

When this type of feedback is applied there are several additional factors to consider. The instrument should be a dual-channel quadrature type with line driver outputs (using RS485 line drivers).The Mentor II on-board power supply for the encoder (pulse tachometer) is selectable to $5 \mathrm{~V}, 12 \mathrm{~V}$ or 15 V by means of the red DIP switch on PCB MDA2B. (Refer to Fig. 14.) This supply can deliver 300 mA . It is not isolated from the Drive. Transmission line terminating resistors should be installed on the mounting pillars (stand-offs) provided at the lower left-hand corner of the PCB, Fig. 14. These resistors help to prevent line reflections and to reduce noise pick-up into the differential receiver on the Drive. When an encoder (pulse tachometer) is employed, the P and I gains should be adjusted to the following suggested values as a starting point

$$
\begin{aligned}
& 03.09=15 \\
& 03.10=5
\end{aligned}
$$

Connection of the marker pulses is only necessary if the Drive is being used in an application which requires position control such as digital lock or spindle orientation. If marker pulses are used then the encoder must have 1024 pulses per revolution.

7.3.3 Field current

First enable the Field Controller.
Set parameter 06.13 $=1$.

Current Range

The Mentor II M75 provides for a field current range of either 2A maximum or 8A please refer to the table in the description of parameter 06.11. In the example chosen, the maximum field current is 1.85 A . This is $>1.5 \mathrm{~A}$ and $<2 \mathrm{~A}$.

Set $06.11=204$ to select the correct range.

Maximum Field Current

The full-scale value of the Max. Field Current parameter 06.08 is 1000 . The maximum field current of the chosen example is 1.85 A . The setting for parameter 06.08 is:-
$\frac{\text { Motor max. field current }}{\text { Field range }}=\frac{1.85}{2.00} \times 1000=925$

Field Weakening

Since field weakening is not employed in this particular example, set $06.07=1000$ (default).

For details of settings and calculations for field weakening, please refer to section 7.3.4, Field weakening

Field Economy

For applications which involve the Drive being at zero speed no-load (i.e. motor stopped but on stand-by) for periods in the duty cycle, provision is made to economise on the field current. The user can set the value of the reduced field current (parameter 06.09) and the period of time before field current is reduced (parameter 06.12).

To employ field economy, the following settings are required:-

Field Economy Time-out Enable - set $06.15=1$

Field Economy Current

Suppose the chosen value of the reduced field current is 0.5 A :-
$\frac{\text { Motor reduced field current }}{\text { Motor max. field current }}=\frac{0.5}{1.85} \times 1000=270$

$$
\text { Set } 06.09=270 .
$$

Test the effect by temporarily setting the Field Economy Time-out, 06.12, to 2 seconds ($06.12=$ 2). Disable the Drive and monitor the current value at parameter 06.03. Two seconds after the Drive is disabled, 06.03 will be seen to reduce to the selected value of 06.09 .

NOTE

Internal Field Regulator

If Mentor II is supplied with the Internal Field Regulator, field economy is under automatic control of the software and an external field ONOFF control switch (Figs. 12 and 13) is not required. Link out (jumper across) terminals L11 and L12 with wire which is capable of carrying the field current.

7.3.4 Field weakening

In the example, the maximum armature voltage is 500 V DC. If field weakening is required, a typical practical setting for the back-EMF cross-over point 06.07 would be 15 to 20 volts below the maximum armature voltage.

For example, set $06.07=480$.
At the reduced voltage, the field would begin to weaken progressively down to the value set by parameter 06.10. Since the field current feedback setting 06.11 in this example is 204-2A range the minimum is a selected percentage of it. Suppose 90% is selected. Then :

$$
\frac{\text { Selected value }}{\text { Feedback setting }}=\frac{0.9}{2.0}=0.45
$$

The setting for minimum field current is :

$$
06.10=0.45 \times 1000=450
$$

For correct operation, field weakening requires speed feedback. (Armature voltage feedback would not be adequate to ensure control.) Therefore, 03.13 would be set to 0 for AC or DC tach. feedback, and speed scaling 03.16 would be set to 250, corresponding to 2500 rpm maximum permissible motor speed. Parameter 03.03 will then correctly read out the actual motor rpm.

If an encoder (pulse tach.) were to be employed, parameter 03.12 would be set to 1 and the encoder scaling 03.14 would need to be set accordingly. The value of 03.14 is dependent on : The maximum motor speed required, and The number of encoder (pulse tach.) pulses per revolution.

7.3.5 Current loop self-tuning

NOTE
The following procedure is optional, and for most general applications is not required. However, if optimum dynamic response is desirable, the current loop, which is the innermost control loop, must be set up to enable the outer control loop (such as the speed loop) to function correctly. The dynamics of the current loop are principally a function of the electrical characteristics of any particular motor.

The Mentor II has a built-in self-tuning procedure.
First, the motor rotor must be locked or the field disconnected to allow the Drive to inject armature current and determine the electrical characteristics of the armature. The rotor must not be allowed to rotate during the self-tuning procedure. (Normally, if the field is disconnected, the rotor of a shunt wound motor will not move.)

Mentor II units from M25 through to M210 contain an internal field regulator and do not require the field to be disconnected.

Self-Tuning Procedure

1 Power-up the Drive.

2 Set parameter $00=200$ to satisfy security.
3 Set $05.09=1$
4 Enable the Drive connect terminal TB4-31 to 0V
5 Perform a Save parameter values procedure before disconnecting the Drive. The parameters affected by the self-tuning procedure are 05.12 to 05.15.(For the save procedure, refer to last section in 8.1 - Procedures for selecting and changing parameters

6 The Drive also has the facility to carry out a continuous autotune by setting parameter 05.27 which will adjust the current loop gains to keep the current loop performance optimised in the case of varying load conditions.

7.3.6 User-defined parameters

Although the following parameter settings are optional it is desirable to set them because doing so allows the user to view various critical Drive values without having to run through several menu sets to find them. All are collected together in Menu 00

Parameter	Drive quantity	Setting	Accessed at
11.01	Armature voltage	03.04	00.01
11.02	Armature current	05.02^{\star}	00.02
11.03	Motor rpm	03.03	00.03
11.04	Speed reference	01.02	00.04
11.05	AC line voltage	07.06	00.05

*A direct armature current reading can be read on parameter 05.02 if 05.05 is set with the appropriate scale factor. Using the same figures as before, for an M75 Drive, in this instance the setting would be 150% of $75 \mathrm{~A}, 05.05=113$.

As for the motor and Drive configuration parameters, perform a "Save parameter values" procedure before disconnecting the Drive; refer to last section in 8.1 - Procedures for selecting and changing parameters

8 Parameter Set

Index to sections

8.1 Adjustment of Parameters

8.2 Security
8.3 Index of Parameters
8.4 Descriptions of Parameters

Menu 01 Speed Reference
Menu 02 Ramps
Menu 03 Feedback Selection \& Speed Loop
Menu 04 Current Selection \& Limits
Menu 05 Current Loop
Menu 06 Field Control
Menu 07 Analogue I/O
Menu 08 Digital Inputs
Menu 09 Status Outputs
Menu 10 Status Logic \& Diagnostic Information
Menu 11 Miscellaneous
Menu 12 Programmable Thresholds
Menu 13 Digital Lock

8.5 Menu Logic Diagrams

NOTE

The available range and units for the values of real parameters is given in the index, Section 6.3, and with the descriptions, Section 6.4. Those parameters for which no range is shown are bit-parameters. Comment or explanation of parameters is given in the descriptions where necessary.

8.1 Adjustment of Parameters

8.1.1 The Parameter Set

Parameters are of two principal kinds numericalvalue (real) parameters such as speed and acceleration, and digital or bit parameters. The numerical values are comparable to the adjustable potentiometers used in purely analog Drives. They are much more precise, and not subject to drift from the set value. Bit values are comparable to links (jumpers) or switches, having an either-or function.

All parameters, of either kind, are either Read Only (RO) or Read-Write (R/W).

The parameter set with which Mentor II Drives are equipped is divided into two further groups for operational convenience.

Those which are ordinarily needed for setting the Drive up at the installation and start-up stage can be called up whenever the Drive is powered on, and are called the visible parameters. The second group contains the invisible parameters, so called because at Level 1 security they do not appear in the Index display, even if called up. These are the parameters required for fine-tuning a Drive to operate, for example, in a process system, usually in conjunction with one or more other Drives of the same or different type.

8.1.2 Visible and Invisible Parameters

Visible parameters, both RO and R/W, are always available to read when the Drive is powered on. Visible R/W parameters are normally protected by one or more levels of security and cannot be changed until the correct codes have been entered. This is Level 1 security, unless and until a higher level code is set.

Invisible parameters always require Level 2 security code, and will require Level 3 (if set). With the correct code(s), invisible RO parameters are accessible to read, and invisible R/W parameters are accessible to write.

Visible and invisible parameters are distinguished in the text and in the control logic diagrams for Menus 1 to 9 and 12. Visible parameter numbers are in plain typeface, e.g. 01.01, and invisible parameters in italics, e.g. 01.01.

8.1.3 Organization

Parameters are organized into functionally-related sets - menus - so that access to any individual parameter is logical and quick. The menus are listed at the beginning of Section 8.2.

8.1.4 Adjustment

Any menu, and any visible parameter can be selected and will display its value to read without need for a Security Code. The procedure is the same if a parameter value is to be changed, except that entering a Security Code will normally have to be the first action.

Any menu, and any invisible parameter can be selected and its value displayed to read and to write when the correct security code has been entered.

Whenever the user returns to a menu (between power-on and power-off) the software immediately goes to the last parameter to have been selected in that menu. This is convenient when making a series of adjustments to a particular group of parameters.

8.1.5 Access to Parameters

Initially, when the Drive is first powered on, and if Level 3 security is not set, access to write is immediately available to a small group of the visible parameters - refer to Section 8.2, Security and the Overview Control Logic Diagram A.

If Level 3 security is set, all parameters are protected at all times.
8.1.6 Procedure

The procedure for selecting and changing a
parameter is shown in Fig. 17, described in the following section, and also on the keypad itself.

Adjustment of parameters and Level 1 security

Procedures for selecting and changing parameters

Action	Keys	Display
Select menu	LEFT or RIGHT	Index, left of decimal point
Select parameter	UP or DOWN	Index, right of decimal point
Read only	Data	
Change value only if display is flashing -refer to 8.2	MODE, then UP or DOWN	Data
Enter new value	$M O D E$	Data

For most parameters, the Drive accepts and uses the value entered, and the motor will respond to the new value immediately. The exception is a change of Baud Rate (11.12), Serial Mode (11.13), Threshold 1 Destination (12.07) and Threshold 2 Destination (12.12). To allow the Drive to act on the change in these cases it is necessary to press RESET after writing the new value.

Any new value is not saved however, and will be lost at power-off.

The keypad is ready to select another menu or parameter.

The procedure below SAVES the values of all parameters changed since the previous save.

To Save the Value(s) Written

Action	Keys	Display
Press $D O W N$	$D O W N$	until Index (par.) xx.00
	MODE, then UP or DOWN	Data, set value $=001$
Press $R E S E T$		

Value(s) saved

8.2 Security

After selecting a parameter number and pressing MODE -

- If the parameter data flashes, the user can change the value UNLESS the parameter has already been configured to be controlled by a programmable input.
- If the data does not flash, either the parameter is $R O$ or, if R / W, it is protected by security. The procedure for gaining access to parameters protected by Level 1 security is given below.

If the Level 1 security code does not afford access when applied, the parameter is protected by Level 3 security.

Visible parameters are always accessible to the user to read only. Unless the Level 1 security code is entered, most R/W parameters are not accessible to write.

Exceptionally - and provided that Level 3 security is not set - a group of 24 parameters in Menus 1 to 6 plus parameters 11.01 to 11.10, are immediately accessible to write.

Security procedures

8.2.1 Power on

The following visible parameters are immediately accessible, NOT protected by security level 1 and 2

01.05	Inch reference
01.06	Maximum speed forward
01.09	Maximum speed reverse
01.11	Reference ON
01.12	REVERSE selector
01.13	INCH selector
02.04	Forward acceleration 1
02.05	Forward deceleration 1
02.06	Reverse deceleration 1
02.07	Reverse acceleration 1
03.09	Speed loop P gain (proportional)
03.10	Speed loop I gain (integral)
03.11	Speed loop D gain (differential)
03.14	Feedback encoder scaling
03.15	Maximum armature voltage
03.16	Maximum speed (scaling rpm)
03.17	IR compensation
04.05	I limit Bridge 1
04.06	1 limit Bridge 2
05.05	Maximum current (scaled)
06.06	IR. compensation 2
06.07	Back-emf set point
06.08	Maximum field current 1
06.10	Minimum field current

and 11.01 to 11.10 - User Menu 00
Of the rest of the parameters:

* RO parameters are accessible to read.
* R/W parameters are read-only until a Level 1 security code is entered.

8.2.2 Level 1 Security to access the Visible R/W Parameters (Fig. 17)

* UP or DOWN to set index to zero
* Press MODE
* UP or DOWN to write 149 in data (Level 1 security code)
* Press MODE

Visible R/W parameters are now accessible to write new values.

8.2.3 Level 2 Security to access the Invisible R/W Parameters.

* UP or DOWN to set index to zero
* Press MODE
* UP or DOWN to write 200 in data (Level 2 security code)
* Press MODE

All R/W parameters are now accessible to write new values.
RO parameters can be read.

8.2.4 To Enable and Inhibit Free Access to ALL Parameters

To cancel security:

* Power on
* UP or DOWN to set index to zero
* Press MODE
* UP or DOWN to write 200 in data (Level 2 security code)
* Press MODE
* LEFT or RIGHT plus UP or DOWN to set index to 11.17.
* Press MODE
* DOWN to write 0

If the parameters are now Saved (refer to last section in 8.1, - PROCEDURES for SELECTING and CHANGING PARAMETERS) there is no protection for ANY parameter.

To reinstate security:
Repeat the procedure in paragraph 2.1 but make parameter $11.17=149$, and Save (refer to last section in 8.1, - Procedures for selecting and changing parameters).

8.2.5 Level 3 Security

An additional, private, security code, Level 3 , is available to the user. The code is userprogrammable from 1 to 255 EXCEPT 149 (the Level 1 code). If applied, the effect is to prevent access to all parameters until the Level 3 code has been entered prior to entering the Level 1 or Level 2 code.

To assign a Level 3 security code number:

* Power up
* UP or DOWN to set index to zero
* Press MODE
* UP or DOWN to write 200 in data (Level 2 security code)
* Press MODE
* LEFT or RIGHT plus UP or DOWN to set index to 11.17. Data display shows 149.
* Press MODE
* UP or DOWN to write any 3-digit number from 1 to 255 in data (excluding 149 - the Level 1 security code)
* Press MODE
* Save (refer to last section in 6.1, Procedures for selecting and changing parameters

There is now no access to any parameter, not even to read only, until the assigned Level 3 code has been entered.

Level 3 Security access:

```
* LEFT or RIGHT plus UP or DOWN to set index to zero
* Press MODE
* UP or DOWN to write the assigned code number in data (Level 3 security code)
* Press MODE
```

The user now has access through Level 1 and Level 2 Security, one or other of which has to be entered next.

8.3 Index of parameters

The Index of Parameters lists the sixteen Menus, followed by the basic data for each parameter of the Mentor II Parameter Set listed menu by menu. For detailed descriptions of parameters please refer to Section 8.4.

8.3.1 Menus list

Menu	Description
00	User Menu - to give fast access to the most-used parameters
01	Speed Reference - selection of source and limits
02	Acceleration and Deceleration Ramps
03	Speed Feedback Selection and Speed Loop
04	Current - selection and limits
05	Current Loop
06	Field Control
07	Analog Inputs and Outputs
08	Logic Inputs
09	Status Outputs
10	Status Logic \& Fault Information
11	Miscellaneous
12	Programmable Thresholds
13	Digital Lock
14	MD29 System Set-up
15	Applications Menu 1
16	Applications Menu 2
00	
0	

8.3.2 Parameters - names, range \& default values

References in brackets (xx.xx) in the Default column indicate parameters which default to other parameters.

Parameters shown in bold type are those which are freely accessible ONLY immediately after power-on.

Parameters at the end of each menu list in italic type are invisible. Refer to sections 8.1 and 8.2.

Menu 00 User Library - Refer to Menu 11

Contains ten parameters (00.01 to 00.10). The user sets parameters 11.01 to 11.10 to any parameter numbers most often required or used. These can then be accessed directly through the corresponding numbers 00.01 to 00.10 , avoiding the need to call up different menus.

Menu 01 Speed Reference - selection of source and limits

Number	Description	Range	Type	Default
01.01	Pre-offset speed reference	± 1000	RO	
01.02	Post-offset speed reference	± 1000	RO	
01.03	Pre-ramp reference	± 1000	RO	
01.04	Offset	± 1000	R/W	+ 000
01.05	Inch reference	± 1000	R/W	+ 050
01.06	Maximum speed forward	0 ~ +1000	R/W	+1000
01.07	Minimum speed forward	$0 \sim+1000$	R/W	+ 000
01.08	Minimum speed reverse	-1000 ~ 0	R/W	+ 000
01.09	Maximum speed reverse (4Q)	-1000 ~ 0	R/W	-1000
	(1Q)	-1000 ~ 0	R/W	000
01.10	Bipolar reference selector (4Q)	0 or 1	R/W	1
	(1Q)	0 or 1	R/W	0
01.11	Reference "ON"	0 or 1	R/W	0
01.12	Reverse selector	0 or 1	R/W	0
01.13	Inch selector	0 or 1	R/W	0
01.14	Reference selector 1	0 or 1	R / W	0
01.15	Reference selector 2	0 or 1	R / W	0
01.16	Zero reference interlock	0 or 1	R / W	0
01.17	Reference 1	± 1000	R / W	(07.15)
01.18	Reference 2	± 1000	R / W	+ 300
01.19	Reference 3	± 1000	R/W	(07.13)
01.20	Reference 4	± 1000	R/W	(07.14)

Menu 02 Acceleration and Deceleration Ramps

Number	Description	Range	Type	Default
02.01	Post-ramp reference	± 1000	RO	
02.02	Ramp enable	0 or 1	R/W	1
02.03	Ramp hold	0 or 1	R/W	0
02.04	Forward acceleration 1	0 ~ 1999	R/W	+ 050
02.05	Forward deceleration 1	0 ~ 1999	R/W	+050
02.06	Reverse deceleration 1 (4Q)	0 ~ 1999	R/W	+ 050
	(1Q)	0 ~ 1999	R/W	000
02.07	Reverse acceleration 1 (4Q)	0 ~ 1999	R/W	+ 050
	(1Q)	0~1999	R/W	000
02.08	Forward acceleration 2	0~1999	R / W	+ 100
02.09	Forward deceleration 2	$0 \sim 1999$	R/W	+ 100
02.10	Reverse deceleration 2 (4Q)	$0 \sim 1999$	R / W	+ 100
	(1Q)	0~1999	R/W	000
02.11	Reverse acceleration 2 (4Q)	0~1999	R/W	+ 100
	(1Q)	0~1999	R/W	000
02.12	Inch ramp rate	0~1999	R/W	+ 100
02.13	Enable inch ramp	0 or 1	R/W	0
02.14	Forward acceleration selector	0 or 1	R/W	0
02.15	Forward deceleration selector	0 or 1	R / W	0
02.16	Reverse deceleration selector	0 or 1	R/W	0
02.17	Reverse acceleration selector	0 or 1	R / W	0
02.18	Common ramp selector	0 or 1	R/W	0
02.19	Ramp scaling ($\times 10$)	0 or 1	R/W	0

Menu 03 Speed Feedback - selection and Speed Loop

Number	Description	Range	Type	Default
03.01	Final speed demand	± 1000	RO	
03.02	Speed feedback	± 1000	RO	
03.03	Speed feedback (rpm)	± 1999	RO	
03.04	Armature voltage	± 1000	RO	
03.05	IR Compensation output	± 1000	RO	
03.06	Speed error	± 1000	RO	
03.07	Speed loop output	± 1000	RO	
03.08	Speed error integral	± 1000	RO	
03.09	Speed loop Proportional gain	$0 \sim 255$	R/W	080
03.10	Speed loop Integral gain	$0 \sim 255$	R/W	040
03.11	Speed loop Derivative gain	$0 \sim 255$	R/W	0
03.12	Digital feedback selector	0 or 1	R/W	0
03.13	AV analog feedback selector	0 or 1	R/W	0
03.14	Encoder feedback scaling	0 ~ 1999	R/W	+ 419
03.15	Maximum armature voltage	0~1000	R/W	+ 600
03.16	Maximum speed (scaling rpm)	0 ~ 1999	R/W	+1750
03.17	IR Compensation	$0 \sim 255$	R/W	000
03.18	Hard speed reference	± 1000	R/W	(07.11)
03.19	Hard speed reference selector	0 or 1	R / W	0
03.20	IR droop selector	0 or 1	R/W	0
03.21	Ramp output selector	0 or 1	R/W	1
03.22	Speed offset fine	$0 \sim 255$	R / W	128
03.23	Zero speed threshold	$0 \sim 255$	R / W	16
03.24	Derivative-term source	$1 \sim 3$	R / W	1
03.25	Speed error filter	$0 \sim 255$	R / W	128
03.26	Tachogenerator Input	± 1000	RO	
03.27	Reserved			
03.28	Proportional gain $\times 4$	0 or 1	R/W	0
03.29	Speed loop gains / 8	0 or 1	R / W	0

Menu 04 Current - selection and limits

Number	Description	Range	Type	Default
04.01	Current demand	± 1000	RO	
04.02	Final current demand	± 1000	RO	
04.03	Over-riding current limit	± 1000	RO	
04.04	Current limit (taper start point)	0~1000	R/W	+1000
04.05	Current limit Bridge 1	0 ~ 1000	R/W	+1000
04.06	Current limit Bridge 2	0~1000	R/W	+1000
04.07	Current limit 2	0~1000	R/W	+1000
04.08	Torque reference	± 1000	R / W	+ 000
04.09	Current offset	± 1000	R/W	+ 000
04.10	Current limit bridge 2 selector	0 or 1	R/W	0
04.11	Current offset selector	0 or 1	R / W	0
04.12	Mode bit 0	0 or 1	R/W	0
04.13	Mode bit 1	0 or 1	R / W	0
04.14	Quadrant 1 enable	0 or 1	R/W	1
04.15	Quadrant 2 enable (4Q)	0 or 1	R/W	1
	(1Q)	0 or 1	R/W	0
04.16	Quadrant 3 enable (4Q)	0 or 1	R / W	1
	(1Q)	0 or 1	R/W	0
04.17	Quadrant 4 enable (4Q)	0 or 1	R/W	1
	(1Q)	0 or 1	R/W	0
04.18	Enable automatic current limit bridge2 change	0 or 1	R/W	0
04.19	Current limit timer	0 ~ 255	R/W	000
04.20	Current taper 1 threshold	$0 \sim 1000$	R/W	+1000
04.21	Current taper 2 threshold	0~1000	R / W	+1000
04.22	Current taper 1 slope	0 ~ 255	R/W	000
04.23	Current taper 2 slope	0~255	R/W	000
04.24	Taper 1 threshold exceeded	0 or 1	RO	
04.25	Taper 2 threshold exceeded	0 or 1	RO	

Menu 05 Current Loop

Number	Description	Range	Type	Default
05.01	Current feedback	± 1000	RO	
05.02	Current feedback (amps)	± 1999	RO	
05.03	Firing angle	277 ~ 1023	RO	
05.04	Slew rate limit	$0 \sim 255$	R/W	040
05.05	Maximum current (scaling)	$0 \sim 1999$	R/W	(rating)
05.06	Overload threshold	$0 \sim 1000$	R/W	+ 700
05.07	Overload integrating time (heating)	$0 \sim 255$	R/W	030
05.08	Overload integrating time (cooling)	$0 \sim 255$	R/W	050
05.09	Enable start-up autotune	0 or 1	R/W	0
05.10	Reduced endstop	0 or 1	R/W	0
05.11	Actual overload	0~1999	RO	
05.12	Discontinuous Integral gain	$0 \sim 255$	R / W	16
05.13	Continuous Proportional gain	$0 \sim 255$	R / W	16
05.14	Continuous Integral gain	$0 \sim 255$	R / W	16
05.15	Motor constant	$0 \sim 255$	R / W	25
05.16	Reserved		R / W	
05.17	Inhibit firing	0 or 1	R / W	0
05.18	Enable standstill logic	0 or 1	R/W	1
05.19	Standstill mode	0 or 1	R / W	0
05.20	Enable direct firing angle control	0 or 1	R/W	0
05.21	Enable bridge 2 lockout	0 or 1	R/W	0
05.22	Disable adaptive control	0 or 1	R/W	0
05.23	Enable 1 quadrant series 12-pulse	0 or 1	R / W	0
05.24	Series 12-pulse operation	0 or 1	R / W	0
05.25	Parallel 12-pulse operation	0 or 1	R / W	0
05.26	Extra-safe bridge change	0 or 1	R / W	0
05.27	Continuous autotune	0 or 1	R/W	0
05.28	Reduced hysteresis for bridge changeover	0 or 1	R / W	0
05.29	Increased current feedback	0 or 1	R/W	0

Menu 06 Field Control

Number	Description	Range	Type	Default
06.01	Back emf	0~1000	RO	
06.02	Field current demand	$0 \sim 1000$	RO	
06.03	Field current feedback	$0 \sim 1000$	RO	
06.04	Firing angle	261~1000	RO	
06.05	IR compensation 2 output	± 1000	RO	
06.06	IR compensation 2	$0 \sim 255$	R/W	000
06.07	Back emf set point	$0 \sim 1000$	R/W	+1000
06.08	Maximum field current 1	$0 \sim 1000$	R/W	+ 1000
06.09	Maximum field current 2	$0 \sim 1000$	R/W	+ 500
06.10	Minimum field current	$0 \sim 1000$	R/W	+ 500
06.11	Field current feedback scaling*	201 ~ 216	R/W	+204
06.12	Field economy timeout	$0 \sim 255$	R/W	030
06.13	Enable field control	0 or 1	R/W	0
06.14	Maximum field 2 selector	0 or 1	R/W	0
06.15	Enable field economy timeout	0 or 1	R/W	0
06.16	Field current loop integral gain	0 or 1	R/W	1
06.17	Voltage loop integral gain	0 or 1	R/W	0
06.18	Enable speed gain adjustment	0 or 1	R / W	0
06.19	Direct firing angle control	0 or 1	R/W	0
06.20	Alternative IR Comp. 2 selector	0 or 1	R/W	0
06.21	Firing angle front endstop	$0 \sim 1000$	R/W	+1000
06.22	Full or half control selector**	0 or 1	R/W	0
06.23	Reduce gains by factor of 2	0 or 1	R/W	0
06.24	Reduce gains by factor of 4	0 or 1	R/W	0

* Dependent on MDA3 card issue (revision) number
** FXM5 Field Controller only

Menu 07 Analog Inputs and Outputs

Number	Description	Range	Type	Default
07.01	General purpose input 1	± 1000	RO	
07.02	General purpose input 2	± 1000	RO	
07.03	General purpose input 3	± 1000	RO	
07.04	General purpose input 4	± 1000	RO	
07.05	Speed reference input	± 1000	RO	
07.06	RMS input voltage	0~1000	RO	
07.07	Heatsink temperature	$0 \sim 1000$	RO	
07.08	DAC 1 source	0~1999	R/W	+ 201
07.09	DAC 2 source	0~1999	R/W	+ 302
07.10	DAC 3 source	0~1999	R/W	+ 304
07.11	GP1 destination	0~1999	R / W	+ 318
07.12	GP2 destination	0~1999	R/W	+ 408
07.13	GP3 destination	0~1999	R/W	+ 119
07.14	GP4 destination	0~1999	R/W	+ 120
07.15	Speed reference destination	0~1999	R / W	+ 117
07.16	GP1 scaling	0 ~ 1999	R/W	+1000
07.17	GP2 scaling	0 ~ 1999	R / W	+1000
07.18	GP3 scaling	0~1999	R/W	+1000
07.19	GP4 scaling	$0 \sim 1999$	R / W	+1000
07.20	Speed reference scaling	0 ~ 1999	R / W	+1000
07.21	DAC1 scaling	$0 \sim 1999$	R/W	+1000
07.22	DAC2 scaling	0~1999	R / W	+1000
07.23	DAC3 scaling	0 ~ 1999	R / W	+1000
07.24	Reference encoder scaling	0 ~ 1999	R / W	+419
07.25	Encoder reference selector	0 or 1	R/W	0
07.26	Current input selector	0 or 1	R / W	0
07.27	Current sense inverter	0 or 1	R / W	0
07.28	4 mA offset selector	0 or 1	R / W	1
07.29	Invert GP3 and GP4 analog inputs	0 or 1	R/W	0

Menu 08 Logic Inputs

Number	Description	Range	Type	Default
08.01	F1 input run permit	0 or 1	RO	
08.02	F2 input inch reverse	0 or 1	RO	
08.03	F3 input inch forward	0 or 1	RO	
08.04	F4 input run reverse	0 or 1	RO	
08.05	F5 input run forward	0 or 1	RO	
08.06	F6 input	0 or 1	RO	
08.07	F7 input	0 or 1	RO	
08.08	F8 input	0 or 1	RO	
08.09	F9 input	0 or 1	RO	
08.10	F10 input	0 or 1	RO	
08.11	Enable input	0 or 1	RO	
08.12	F2 destination	0~1999	R/W	+ 000
08.13	F3 destination	0~1999	R / W	$+000$
08.14	F4 destination	0 ~ 1999	R/W	+000
08.15	F5 destination	0 ~ 1999	R / W	+ 000
08.16	F6 destination	0 ~ 1999	R / W	+000
08.17	F7 destination	0~1999	R / W	+000
08.18	F8 destination	0~1999	R / W	+000
08.19	F9 destination	0~1999	R/W	+000
08.20	F10 destination	0 ~ 1999	R / W	+000
08.21	Disable normal logic functions	0 or 1	R/W	0
08.22	Invert F2 input	0 or 1	R / W	0
08.23	Invert F3 input	0 or 1	R/W	0
08.24	Invert F4 input	0 or 1	R / W	0
08.25	Invert F5 input	0 or 1	R / W	0
08.26	Invert F6 input	0 or 1	R / W	0
08.27	Invert F7 input	0 or 1	R/W	0
08.28	Invert F8 input	0 or 1	R/W	0

Number	Description	Range	Type	Default
08.29	Invert F9 input	o or 1	R / W	0
08.30	Invert F10 input	o or 1	R / W	0
08.31	Enable Inch Reverse	o or 1	R / W	0
08.32	Enable Inch Forward	o or 1	R / W	0
08.33	Enable Run Reverse	o or 1	R / W	0
08.34	Enable Run Forward	0 or 1	R / W	0

Status Outputs

Number	Description	Range	Type	Default
09.01	Status 1 output	0 or 1	RO	
09.02	Status 2 output	0 or 1	RO	
09.03	Status 3 output	0 or 1	RO	
09.04	Status 4 output	0 or 1	RO	
09.05	Status 5 output	0 or 1	RO	
09.06	Status 6 output (relay)	0 or 1	RO	
09.07	Status 1 source 1	0 ~ 1999	R / W	+ 111
09.08	Invert status 1 source 1	0 or 1	R / W	0
09.09	Status 1 source 2	0~1999	R / W	000
09.10	Invert status 1 source 2	0 or 1	R / W	0
09.11	Invert status 1 output	0 or 1	R / W	0
09.12	Status 1 delay	0~255 sec	R/W	00
09.13	Status 2 source 1	0 ~ 1999	R / W	+ 1007
09.14	Invert status 2 source 1	0 or 1	R / W	0
09.15	Status 2 source 2	0~1999	R / W	000
09.16	Invert status 2 source 2	0 or 1	R / W	0
09.17	Invert status 2 output	0 or 1	R / W	0
09.18	Status 2 delay	0~255 sec	R / W	0
09.19	Status 3 source	0~1999	R / W	+1013
09.20	Invert status 3 output	0 or 1	R / W	0
09.21	Status 4 source	0~1999	R / W	+1003
09.22	Invert status 4 output	0 or 1	R / W	0
09.23	Status 5 source	0 ~ 1999	R / W	+1006
09.24	Invert status 5 output	0 or 1	R / W	0
09.25	Status 6 source (relay)	$0 \sim 1999$	R / W	+1009
09.26	Invert status 6 output	0 or 1	R/W	0

Menu 10 Status Logic \& Diagnostic Information

Number	Description	Range	Type	Default
10.01	Forward velocity	0 or 1	RO	
10.02	Reverse velocity	0 or 1	RO	
10.03	Current limit	0 or 1	RO	
10.04	Bridge 1 enabled	0 or 1	RO	
10.05	Bridge 2 enabled	0 or 1	RO	
10.06	Electrical phase-back	0 or 1	RO	
10.07	At speed	0 or 1	RO	
10.08	Overspeed	0 or 1	RO	
10.09	Zero speed	0 or 1	RO	
10.10	Armature voltage clamp active	0 or 1	RO	
10.11	Phase rotation	0 or 1	RO	
10.12	Drive healthy (normal)	0 or 1	RO	
10.13	Alarm (1 x t)	0 or 1	RO	
10.14	Field loss	0 or 1	RO	
10.15	Feedback loss	0 or 1	RO	
10.16	Supply or phase loss	0 or 1	RO	
10.17	Instantaneous trip	0 or 1	RO	
10.18	Sustained overload	0 or 1	RO	
10.19	Processor 1 watchdog	0 or 1	RO	
10.20	Processor 2 watchdog	0 or 1	RO	
10.21	Motor overtemperature	0 or 1	RO	
10.22	Heatsink overtemperature	0 or 1	RO	
10.23	Speed loop saturated	0 or 1	RO	
10.24	Zero current demand	0 or 1	RO	
10.25	Last trip	0~255	RO	
10.26	The trip before last trip (10.25)	0~255	RO	
10.27	The trip before 10.26	$0 \sim 255$	RO	
10.28	The trip before 10.27	0~255	RO	

Number	Description	Range	Type	Default
10.29	Disable field loss trip	0 or 1	R / W	0
10.30	Disable feedback loss trip	0 or 1	R / W	0
10.31	Disable supply or phase loss trip	0 or 1	R / W	0
10.32	Disable motor overtemperature trip	0 or 1	R / W	1
10.33	Disable heatsink overtemperature trip	0 or 1	R / W	0
10.34	External trip	0 or 1	R / W	0
10.35	Processor 2 trip	$0 \sim 255$	R / W	0
10.36	Disable current loop loss trip	0 or 1	R / W	0
10.37	Disable armature open circuit trip	0 or 1	R / W	0

Menu 11 Miscellaneous

Parameters 11.07 through to 11.10 have functions associated with the MD29 PCB. Refer to the MD29 Users Guide.

Number	Description	Range	Type	Default
11.01	Parameter 00.01	0 ~ 1999	R/W	0
11.02	Parameter 00.02	0 ~ 1999	R/W	0
11.03	Parameter 00.03	0 ~ 1999	R/W	0
11.04	Parameter 00.04	0 ~ 1999	R/W	0
11.05	Parameter 00.05	0 ~ 1999	R/W	0
11.06	Parameter 00.06	0 ~ 1999	R/W	0
11.07	Parameter 00.07	$0 \sim 1999$	R/W	0
11.08	Parameter 00.08	$0 \sim 1999$	R/W	0
11.09	Parameter 00.09	0~1999	R/W	0
11.10	Parameter 00.10	0 ~ 1999	R/W	0
11.11	Serial address	$0 \sim 99$	R/W	001
11.12	Baud rate	0 or 1	R/W	0
11.13	Serial Mode	$1 \sim 4$	R/W	001
11.14	Reserved			
11.15	Processor 1 software version	$0 \sim 255$	RO	
11.16	Processor 2 software version	$0 \sim 255$	RO	
11.17	Level 3 security code	$0 \sim 255$	R / W	149
11.18	Boot-up parameter	0~1999	R / W	+000
11.19	Serial programmable source	$0 \sim 1999$	R / W	+ 000
11.20	Serial scaling	$0 \sim 1999$	R / W	+1000
11.21	LEDs byte	$0 \sim 255$	R / W	
11.22	Disable normal LED functions	0 or 1	R / W	0
11.23	High voltage MDA6	0 or 1	R / W	0
11.24	Mains (AC power) dip ride-through	0 or 1	R / W	0

Menu 12 Programmable thresholds

Number	Description	Range	Type	Default
12.01	Threshold 1 exceeded	0 or 1	RO	
12.02	Threshold 2 exceeded	0 or 1	RO	
12.03	Threshold 1 source	$0 \sim 1999$	R/W	+302
12.04	Threshold 1 level	$0 \sim 1000$	R/W	+000
12.05	Threshold 1 hysteresis	$0 \sim 255$	R/W	002
12.06	Invert threshold 1 output	0 or 1	R/W	0
12.07	Threshold 1 destination	$0 \sim 1999$	R/W	+000
12.08	Threshold 2 source	$0 \sim 1999$	R/W	+501
12.09	Threshold 2 level	$0 \sim 1000$	R/W	+000
12.10	Threshold 2 hysteresis	$0 \sim 255$	R/W	002
12.11	Invert threshold 2 output	0 or 1	R/W	0
12.12	Threshold 2 destination	$0 \sim 1999$	R/W	+000

Menu 13 Digital Lock

Number	Description	Range	Type	Default
13.01	Master encoder counter	$0 \sim 1023$	RO	
13.02	Slave encoder counter	$0 \sim 1023$	RO	
13.03	Master counter increment	± 1000	RO	
13.04	Slave counter increment	± 1000	RO	
13.05	Position error	± 1000	RO	
13.06	Precision reference (Isb)	$0 \sim 255$	R/W	000
13.07	Precision reference (msb)	$0 \sim 255$	R/W	000
13.08	Position loop gain	$0 \sim 255$	R/W	025
13.09	Position loop correction limit	$0 \sim 1000$	R/W	+010
13.10	Enable digital lock	0 or 1	R/W	0
13.11	Rigid lock selector	0 or 1	R/W	1
13.12	Precision reference selector	0 or 1	R/W	0
13.13	Precision reference latch	0 or 1	R/W	1
13.14	Precision speed reference (16-bit)	$0 \sim 255$	R/W	0

Menu 14 plus MD29 System Set-up

For further information on Menu 14 parameters, please refer to the MD29 User Guide.

Number	Description	Range	Type	Default
14.01	ANSI serial address	0 ~ 99	R/W	1
14.02	RS485 mode	1 ~ 16	R/W	1
14.03	RS485 baud rate	3 ~ 192	R/W	48
14.04	CLOCK task time-base (ms)	1 ~ 200	R/W	10
14.05	CTNet Node Address (MD29AN only)	$0 \sim 255$	R/W	0
14.06	Autorun enable	0 or 1	R/W	1
14.07	Global run-time trip enable	0 or 1	R/W	1
14.08	I/O link trip enable	0 or 1	R/W	0
14.09	Enable watchdog (WDOG)	0 or 1	R/W	0
14.10	Trip if a parameter write over-ranges	0 or 1	R/W	1
14.11	Disable monitor port protocol	0 or 1	R/W	0
14.12	Position controller enable	0 or 1	R/W	0
14.13	I/O link synchronisation source	0 or 1	R/W	0
14.14	Encoder time-base select	0 or 1	R/W	0
14.15	Reserved	0 or 1	R/W	0
14.16	Flash store request	0 or 1	R/W	0
14.17	RS232 Drive-Drive comms enable	0 or 1	R/W	0
11.09	RS485 parameter pointer	0~1999	R/W	0
11.10	RS485 parameter pointer \#2 (mode 4)	$0 \sim 1999$	R/W	0
11.10	RS485 mode 3 scaling	0 ~ 1999	R/W	0
16.62	CT Net messages per second	0 ~ 1999	RO	
16.63	Line number of error	0~1999	RO	

Menu 15 Applications Menu 1

Number	Description	Range	Type	Default
15.01	RO variable 1	± 1999	RO	
15.02	RO variable 2	± 1999	RO	
15.03	RO variable 3	± 1999	RO	
15.04	RO variable 4	± 1999	RO	
15.05	RO variable 5	± 1999	RO	
15.06	Real R/W variable 1	± 1999	R/W	+ 000
15.07	Real R/W variable 2	± 1999	R/W	+ 000
15.08	Real R/W variable 3	± 1999	R/W	+ 000
15.09	Real R/W variable 4	± 1999	R/W	+ 000
15.10	Real R/W variable 5	± 1999	R/W	+ 000
15.11	Integer R/W variable 1	0 ~ 255	R/W	000
15.12	Integer R/W variable 2	$0 \sim 255$	R/W	000
15.13	Integer R/W variable 3	$0 \sim 255$	R/W	000
15.14	Integer R/W variable 4	0 ~ 255	R/W	000
15.15	Integer R/W variable 5	$0 \sim 255$	R/W	000
15.16	Integer R/W variable 6	$0 \sim 255$	R/W	000
15.17	Integer R/W variable 7	0~255	R/W	000
15.18	Integer R/W variable 8	$0 \sim 255$	R/W	000
15.19	Integer R/W variable 9	$0 \sim 255$	R/W	000
15.20	Integer R/W variable 10	0~255	R/W	000
15.21	Bit variable 1	0 or 1	R/W	0
15.22	Bit variable 2	0 or 1	R/W	0
15.23	Bit variable 3	0 or 1	R/W	0
15.24	Bit variable 4	0 or 1	R/W	0
15.25	Bit variable 5	0 or 1	R/W	0
15.26	Bit variable 6	0 or 1	R/W	0
15.27	Bit variable 7	0 or 1	R/W	0
15.28	Bit variable 8	0 or 1	R/W	0
15.29	Bit variable 9	0 or 1	R/W	0

Number	Description	Range	Type	Default
15.30	Bit variable 10	0 or 1	R/W	0
15.31	Bit variable 11	0 or 1	R/W	0
15.32	Bit variable 12	0 or 1	R/W	0
15.33	Bit variable 13	0 or 1	R/W	0
15.34	Bit variable 14	0 or 1	R/W	0
15.35	Bit variable 15	0 or 1	R/W	0
15.36	Bit variable 16	0 or 1	R/W	0
15.37 \sim 15.59	Integer RW (not saved in NVRAM)	0 or 1	R/W	0
15.60	Ratio 1 wide integer $=15.16 \& 15.17$	$0 \sim 255$	R/W	000
15.61	Ratio 2 wide integer $=15.16 \& 15.17$	$0 \sim 255$	R/W	000
15.62	Serial Mode 4 input data		RO	
15.63	Serial Mode 4 output data		RO	

Menu 16 Applications Menu 2

Number	Description	Range	Type	Default
16.01	RO variable 1	± 1999	RO	
16.02	RO variable 2	± 1999	RO	
16.03	RO variable 3	± 1999	RO	
16.04	RO variable 4	± 1999	RO	
16.05	RO variable 5	± 1999	RO	
16.06	Real R/W variable 1	± 1999	R/W	+000
16.07	Real R/W variable 2	± 1999	R/W	+000
16.08	Real R/W variable 3	± 1999	R/W	+000
16.09	Real R/W variable 4	± 1999	R/W	+000
16.10	Real R/W variable 5	± 1999	R/W	+000
16.11	Integer R/W variable 1	$0 \sim 255$	R/W	000

Number	Description	Range	Type	Default
16.12	Integer R/W variable 2	$0 \sim 255$	R/W	000
16.13	Integer R/W variable 3	$0 \sim 255$	R/W	000
16.14	Integer R/W variable 4	0 ~ 255	R/W	000
16.15	Integer R/W variable 5	$0 \sim 255$	R/W	000
16.16	Integer R/W variable 6	$0 \sim 255$	R/W	000
16.17	Integer R/W variable 7	$0 \sim 255$	R/W	000
16.18	Integer R/W variable 8	$0 \sim 255$	R/W	000
16.19	Integer R/W variable 9	$0 \sim 255$	R/W	000
16.20	Integer R/W variable 10	$0 \sim 255$	R/W	000
16.21	Bit variable 1	0 or 1	R/W	0
16.22	Bit variable 2	0 or 1	R/W	0
16.23	Bit variable 3	0 or 1	R/W	0
16.24	Bit variable 4	0 or 1	R/W	0
16.25	Bit variable 5	0 or 1	R/W	0
16.26	Bit variable 6	0 or 1	R/W	0
16.27	Bit variable 7	0 or 1	R/W	0
16.28	Bit variable 8	0 or 1	R/W	0
16.29	Bit variable 9	0 or 1	R/W	0
16.30	Bit variable 10	0 or 1	R/W	0
16.31	Bit variable 11	0 or 1	R/W	0
16.32	Bit variable 12	0 or 1	R/W	0
16.33	Bit variable 13	0 or 1	R/W	0
16.34	Bit variable 14	0 or 1	R/W	0
16.35	Bit variable 15	0 or 1	R/W	0
16.36	Bit variable 16	0 or 1	R/W	0
$\begin{gathered} 16.37 \\ \underset{\sim}{\sim} .61 \end{gathered}$	Integer RW (not saved in NVRAM)	0 or 1	R/W	0
16.62	CT Net messages	0~1999	RO	
16.63	DPL error line number	0~1999	RO	

Mentor parameters that cannot be controlled by analog input

ALL read only parameters
ALL bit parameters
ALL parameters which have a range of 0-255

In addition,

```
2.02 to 2.12
3.15, 3.16
5.05
6 . 2 1
7.08 to }7.2
8.12 to }8.2
9.07, 9.09, 9.13, 9.15, 9.19, 9.21, 9.23, 9.25
11.01 to 11.10, 11.18, 11.19, 11.20
12.03, 12.07, 12.08, 12.12
13.14
15.01 to }15.0
15.60, 15.61, 15.62, 15.63
16.01 to 16.05
```


8.4 Parameter descriptions

Abbreviations used in the following parameter descriptions are as follows:

RW Read/Write
RO \quad Read Only
Bit Two state only parameter, 0 or 1
$\mathrm{Bi} \quad$ Bipolar - can have positive and negative values
Uni Unipolar - can have positive values only
Int Integer

Symbols used in the parameter descriptions are as follows:
$\Rightarrow \quad$ default value
今 range of values
~ indicates a range of values
Units are shown in the bottom right cell

Menu 1

Speed Reference

There are four speed references, $01.17,01.18$, 01.19 and 01.20 Each of the four can be given any single value in the range 1000 forward to 1000 in reverse (the value 1000 representing full speed), and can be rewritten through the keypad, the programmable inputs or the serial link (interface) at any time. The default destination for external speed reference (terminal TB1-3) is reference 1 (01.17), meaning that the external reference is present in reference 1 unless a different selection is made, from the other three references. The availability of four selectable speed reference parameters gives great flexibility in the use of references from other equipment. Such additional external references would be handled by general purpose analog inputs, Menu 07, or digital logic inputs, Menu 08.

Two selectors, 01.14 and 01.15, control the application of the four internal references as the source speed reference.

Modifying factors applied to the source speed reference are, in sequence, an added offset, selection of bipolar or unipolar input, inversion of polarity (reverse), and the maximum and minimum values of forward and reverse speed, Menu 02.

Control selectors -
01.11 Reference ON (if $01.11=0$ then pre-ramp reference $=0$),
01.12 Reverse (by reference inversion)
01.13 Inch speed reference (01.05).

The speed reference at source, 01.01 is the input to the zero reference interlock 01.16, which (when selected, $01.16=1$) prevents the Drive starting until the speed reference is close to zero.

01.01 Pre-offset speed reference

Monitors the value of the speed reference continuously. Parameter 01.01 is also used to initiate the zero speed reference interlock, 01.16.
01.02 Post-offset speed reference

Monitors the value of the speed reference after the offset, 01.04, has been added.

01.03 Pre-ramp reference

			Bi			
,	± 1000	$\mid \Rightarrow$				

The final speed reference before any ramp rates are applied (refer to Menu 02).

01.04	Offset					
		RW	Bi			
	$\hat{\imath}$ ± 1000 \Rightarrow +000					

The analog reference offset (range -1000 to +1000) is a programmable speed demand term added to the speed reference value 01.01. It is a practical speed trim input, as for example from a dancer arm in tension control, or can be used to set a creep or minimum speed.
01.05 Inch reference

		RW	Bi			
$\hat{\jmath}$	± 1000	\Rightarrow	+050			

Becomes the source of speed reference when selected by 01.13 (controlled in default by terminals TB3-22 and TB3-23). It provides the convenient facility to set a speed demand different from (and usually less than) the ordinary speed reference. Must be less than the maximum speed set by 01.06 and 01.09.
01.06 Max. speed forward

	RW	Uni			
$\hat{\imath}$ 0 to +1000 +1000					

Sets the upper limit of speed in the forward direction of rotation.
01.07 Min. speed forward

Sets the lower limit of speed in the forward direction of rotation. The speed minimum value is disabled if bipolar selector $01.10=1$ to prevent oscillation between the forward and reverse minimum speeds when the input speed reference is zero.

01.08 Min. speed reverse

Sets the lower limit of speed in the reverse direction of rotation. The speed minimum value is disabled if bipolar selector $01.10=1$ to prevent oscillation between the forward and reverse minimum speeds when the input speed reference is zero.

01.09 Max. speed reverse

4 Quadrant

	RW	Uni				
$\hat{\jmath}$	-1000 to 0	\Rightarrow	-1000			

1 Quadrant

| | RW | Uni | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\jmath}$ | 0 | \Rightarrow | 000 | | |

Sets the upper limit of speed in the reverse direction of rotation.

01.10 Bipolar reference selector

4 Quadrant

1 Quadrant

When set to 1 , allows the Drive to respond to a bipolar analog speed reference (01.02) in which case the direction of rotation is determined by the bipolar signal. Positive polarity causes forward rotation; negative polarity, reverse. When $01.10=0$ the Drive responds in a unipolar mode, negativepolarity signals being treated as a zero speed demand.

Applies the speed reference to 01.03, pre-ramp reference. Defaults to zero if terminal TB3-21 (Run permit) is de-activated. Cannot be set to 1 unless terminal TB3-21 is activated. Is also subject to the status of the normal logic functions refer to Menu 08. Controlled in default by terminals TB3-22, TB323, TB3-24, TB3-25
When normal logic functions are disabled a programmable input can be used to control parameter 01.11 only if a RUN PERMIT signal is present.
01.12 Reverse selector

	RW	Bit			

Reverse select inverts the polarity of the speed reference signal. It has the effect (in a fourquadrant Drive) of reversing the sense of the speed signal without regard to the nominal direction of motor rotation. Default value $01.12=0$, inversion not applied. Controlled in default by terminals TB322, TB3-23, TB3-24, and TB3-25.

01.13 Inch selector

Inch select replaces all other speed demand references by the inch reference 01.05. Default value $01.13=0$, normal speed reference applied. Controlled in default by terminals TB3-22, TB3-23.
01.14 Reference selector 1

The two reference selectors 01.14 and 01.15 in combination allow any one of the four speed references 01.17 to 01.20 to be selected.

$\mathbf{1 . 1 4}$	$\mathbf{1 . 1 5}$	Reference Selected
0	0	1.17
1	0	1.18
0	1	1.19
1	1	1.20

01.15 Reference selector 2

The two reference selectors 01.14 and 01.15 in combination allow any one of the four internal speed reference 01.17 to 01.20 to be selected. See table above.

01.16 Zero reference interlock

	RW	Bit			
$\hat{\rightharpoonup}$ \Rightarrow 0, inhibit not applied					

Prevents the starting of the Drive until the analog speed reference, external or internal, is near to zero:
$-8<01.01<+8$ (values in 0.1% of full speed)
This facility is convenient in applications where for safety or process reasons the operator determines speed by observations of the process, for example extrusion, or traction Drives.

01.17 Reference 1

01.18 Reference 2

01.19 Reference 3

01.20 Reference 4

	RW	Bi			
\hat{y}	\Rightarrow	As stated below			

Reference 1, parameter 01.17 is the default destination of the external speed reference (terminal TB1-3) through the programmable input 07.15.

Reference 2, parameter 01.18, default +300 . References 3 and 4, parameters 01.19 and 01.20 , default to programmable inputs GP3 (TB1-6) and GP4 (TB1-7) respectively.

Menu 02

Ramps

The principal alternatives available for setting ramps are as follows -
1 No ramps at all, bypassing the ramp functions
2 A selection of forward and reverse ramps for normal run conditions and an optional separate ramp for inching.

The arrangement for selecting running ramps affords the maximum flexibility. There are two possible ramp values available for each mode of operation, eg forward accelerations 1 and 2, forward decelerations 1 and 2, and so on. A common ramp selector allows switching between the two groups (all the 1 s or all the 2 s). In addition it is possible to change ramps 1 and 2 of any quadrant within the common selection. Ramp selectors may be controlled by any of the programmable digital inputs.

To activate the inch ramp, a select signal is required from 01.13 in addition to the enable function 02.13.

The ramp operation can be interrupted by the ramp hold parameter, which holds the ramp output at its present value when set to 1 . Ramp disable overrides this feature.

The value of the speed reference signal after the ramp is monitored by the post-ramp reference.
02.01 Post-ramp reference

| | R0 | Bi | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 仓े | ± 1000 | \Rightarrow | | | |

Monitors the value of the speed reference after it has bypassed or been modified by the ramp selected.

02.02 Ramp enable
Rit RW Bit $\hat{\rightharpoonup}$ 1 \Rightarrow enabled

If set to disable, makes the post-ramp speed reference 02.01 equal to the pre-ramp speed reference 01.03, effectively bypassing the ramp functions

02.03 Ramp hold

Holds the ramp output at its present value when set to 1 . By using a programmable input to control this parameter, the speed of the Drive may be controlled from 'increase' and 'decrease' pushbuttons instead of a potentiometer or other continuously-variable reference source. Ramp disable over-rides this feature.

02.04 Forward acceleration 1

02.05 Forward deceleration 1

02.06 Reverse deceleration 1

02.07 Reverse acceleration 1

Defines the time taken to accelerate from rest to maximum full-scale speed $(01.03=1000)$, or to decelerate from this speed to rest, as appropriate.

02.08 Forward acceleration 2

02.09 Forward deceleration 2

02.10 Reverse deceleration 2
02.11 Reverse acceleration 2

Alternative acceleration and deceleration ramp rates.
02.12 Inch ramp rate

	RW	Uni			
介े $0 \sim 1999$ \Rightarrow $+100=10 \mathrm{~s}$ 0.1 s					

Defines the rate of acceleration and deceleration when the Inch Reference is selected $(01.13=1)$. To select, 02.13=1.

```
02.13 Enable inch ramp
\begin{tabular}{|l|l|l||c||c|c|}
\hline & RW & Bit & & & \\
\hline \hline\(\hat{y}\) & 0 or 1 & \(\Rightarrow\) & 0, disabled & \\
\hline
\end{tabular}
```

Selects a dedicated ramp rate (defined by 02.12) when inching. If not selected, the normal ramps 02.04 through to 02.11 are used for inching as well as running.
02.14 Forward acceleration selector
02.15 Forward deceleration selector
02.16 Reverse deceleration selector
02.17 Reverse acceleration selector

	RW	Bit			
$\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 0, Ramp 1					

Select from Group 1 or 2
These selectors allow ramps to be chosen from either of the two groups at will, permitting individual acceleration and/or deceleration rates to be changed on receipt of an appropriate command.

02.18 Common ramp selector

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\imath}$ | 0 or 1 | \Rightarrow | 0 , Group 1 | | |

Enables selection between all ramps of Group 1 if 02.14 to $02.17=0$, or all of Group 2.
02.19 Ramp scaling (x10)

	RW	Bit			
$\stackrel{\rightharpoonup}{\mathrm{b}}$ 0 or 1 \Rightarrow 0, disabled					

When $02.19=1$, acceleration and deceleration ramp time is multiplied by 10 .

Menu 03

Feedback Selection and Speed Loop

The principal inputs are the post-ramp reference 02.01 and the hard speed reference 03.18. The post-ramp reference can be summed with or replaced by the hard speed reference. The speed reference can, alternatively, be the hard speed reference alone. The selected input can be modified by the addition of an offset. The result of this summation is the final speed demand (03.01) which is added algebraically to the speed feedback to become the speed error (03.06). The speed error is finally processed by the PID function to become the speed loop output.

Speed feedback is derived from one of three possible sources, encoder (pulse tach.), tachogenerator (tachometer) or armature voltage. Whichever source is selected becomes the speed feedback (03.02). If the armature voltage is selected it is first summed with the IR compensation (03.05), which is derived from the integral function of the speed error and the IR compensation factor is then either added to or subtracted from the scaled armature voltage feedback according to whether IR compensation or IR droop is selected.

The armature voltage feedback is passed to a comparator to provide a voltage clamp, used internally to prevent armature overvoltage. Parameter 03.15 becomes the clamp level.

The speed feedback value is used for two further purposes to supply a speed indication in rpm, and to indicate zero speed.

| 03.01 | Final speed demand |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RO Bi
 \hat{v} ± 1000 \Rightarrow | |

Monitors the value of the speed reference after it has bypassed or been modified by the ramps and/or by the hard speed reference (03.18) and speed offset fine (03.22). It is the speed reference which is presented to the speed control loop of the Drive via the speed summation point.
03.02 Speed feedback

| | RO | Bi | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 人े | ± 1000 | \Rightarrow | | | |

Monitors the value of the speed feedback, derived from one of the following three sources encoder (pulse tach.), tachogenerator (tachometer), or armature voltage. The selection is controlled by 03.12 and 03.13 . The value is used for the closedloop speed control of the motor. Scaling of the encoder (pulse tach.) signal is set by 03.14, and of the armature voltage feedback is controlled by the setting of maximum armature voltage 03.15. A potentiometer is provided for scaling the tachogenerator (tachometer) feedback signal. The speed feedback 03.02 is summed with the final speed demand 03.01 at the speed loop summation point.
03.03 Speed feedback (rpm)

Scaled value of motor speed feedback for external information.

03.05 IR Compensation output

		RO	Bi		

The result of selected value of IR compensation 03.17 acting on the speed loop integral output.

The result of the summation of the final speed demand and the speed feedback, after filtering.

Output of the PID speed loop which becomes current demand (menu 04).

The integrated value of the speed error 03.06, used as input to the IR compensation calculation when using armature voltage feedback (AVF).

03.09 Speed loop proportional gain

	RW	Uni		
$乡$ $0 \sim 255$ \Rightarrow 080				

The factor by which the speed error is multiplied to produce the correction term.

$$
\text { Factor }=\frac{\text { value of } 03.09}{8}
$$

Increasing this value increases both the system damping and the transient speed response, and if made too high for a given load the system will become unstable. The optimum setting is the highest value possible before instability starts to occur. Optimum speed loop performance is achieved by judicious combination of all three gains of the PID algorithm. See p3.28 to increase the speed loop proportional gain by a factor of 4 .
03.10 Speed loop integral gain

	RW	Uni			
§ $0 \sim 255$ \Rightarrow 040					

The factor by which the speed error is multiplied to produce the correction term.

$$
\begin{aligned}
& \text { Factor }=\frac{6 f \times(03.10)}{256} \\
& \text { where } \mathrm{f}=\text { supply frequency }
\end{aligned}
$$

This term ensures zero speed error during steady state load conditions, increasing the value increases the rate of recovery after a disturbance. If the term is made too high, speed tends to oscillate
instead of settling quickly. The optimum setting is the highest value possible before oscillation starts to occur. Optimum speed loop performance is achieved by judicious combination of all three gains of the PID algorithm.
The integral term will be clamped if torque mode is selected or if the Drive is in current limit.
03.11 Speed loop derivative gain

	RW	Uni				
\hat{y}	$0 \sim 255$	\Rightarrow	0			

The factor by which the speed error is multiplied to produce the correction term. There are three possible sources of input to this term either final speed demand 03.01, speed feedback 03.02, or speed error 03.06. The selector is 03.24 . The derivative term is a function of the rate of change of value of the input.
If the input is the speed error 03.06, output is negative if speed error is increasing. This has a damping effect.
If the input is the final speed demand 03.01, output is positive when the final speed demand is increasing. This is called velocity feed forward. If the input is the speed feedback 03.02, output is negative if speed feedback is increasing. This also has a damping effect, but dependent on the changing value of the speed feedback only, not the speed reference.

03.12 Digital feedback selector

Set to 1 to select encoder (pulse tach.) feedback. Set to 0 to select analog feedback.

03.13
 Armature voltage / external analog feedback selector

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | 0 or 1 | \Rightarrow | 0 (analog feedback) | | |

Determines the type of analog speed feedback when 03.12 is set to 0 . Set to 1 to select armature voltage feedback. Default setting selects analog feedback from a tachogenerator (tachometer) or equivalent external source connected to terminal TB1-09.

The value should be set to correspond with the maximum speed of the motor and with the number of lines-per-revolution of the encoder (pulse tach.). To calculate the scale factor:

$$
\text { Scale factor }=\frac{750 \times 10^{6}}{\mathrm{~N} \times \mathrm{n}}
$$

where:
$\mathrm{N}=$ PPR for the encoder (pulse tachometer)
$\mathrm{n}=$ max speed of motor in rpm.
Default value is determined on the basis of a 1024line encoder (pulse tach.), and a maximum speed of 1750 rpm . Maximum frequency for the encoder is 105 kHz .

03.15					
Maximum armature voltage					
RW Uni $\hat{\rightharpoonup}$ $0 \sim 1000$ \Rightarrow +600 V .					

Defines the maximum voltage permitted to be applied to the armature. When armature voltage is the selected feedback ($03.12=0$ and $03.13=1$), the max. armature voltage value is used for scaling the armature voltage measurement so that speed feedback is full scale at maximum voltage. If the speed feedback is derived from an encoder (pulse tach.) or tachogenerator (tachometer), the armature voltage is continuously monitored, and the clamp is applied when the voltage exceeds that set in 03.15. This can be used to prevent the voltage rising above a set level.
An automatic scale factor of 1.2 is applied to clamp the armature voltage feedback to 20% above maximum, to allow for overshoot.
03.16 Maximum speed (scaling rpm)

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\jmath}$ $0 \sim 1999$ \Rightarrow +1750 | | | | | |

Used only to scale the speed feedback so that the value displayed in 03.03 is actual speed in rpm. The value applied to 03.16 should be the max. speed in rpm (divided by ten if the maximum speed is $>1999 \mathrm{rpm}$; speed displayed in 03.03 is then rpm 10.)

Value of $03.05=\frac{(03.08) \times(03.17)}{2048}$
This value is used to calculate the compensation for the resistive voltage-drop of the armature to improve speed control with varying loads when the selected speed feedback is the armature voltage.
IR compensation is a positive feedback, and may give rise to instability if set too high. Furthermore, modern laminated-frame motors have typically a rising load-speed characteristic which is unsuited to armature voltage feedback with IR compensation. IR compensation is more suited to compoundwound motors with a flat (not rising) load-speed characteristic.
The integral of the speed error is used as the input to IR compensation rather than current feedback because it is the most smooth of the variables; in speed control, the value of the speed error integral is the steady-state value of current demand.

03.18 Hard speed reference

		RW	Bi		
合	± 1000	\Rightarrow		(07.11)	

Speed reference fed into the speed loop without passing through the ramps.
03.19 Hard speed reference selector

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 㐱 | 0 or 1 | \Rightarrow | 0 | | |

If 03.19 is set to 1 , and $\operatorname{Ref} \mathrm{ON}(01.11)=1$, the Hard Speed reference (3.18) is added at the speed loop summation point.

If $03.20=1$ when using armature voltage as the speed feedback, speed will decrease as load increases.
A typical application, for example, is a mechanical blanking press fitted with a heavy flywheel. Applying IR droop prevents the Drive from delivering a sudden increase of current at the moment of impact (sudden increase of torque demand). It is better that the Drive should deliver energy to the flywheel during the whole operating cycle rather than mostly at the moment of impact.
03.21 Ramp output selector

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\text { 人े}}$ 0 or 1 \Rightarrow 1 | | | | | |

When $03.21=1$, Ramp output is added at the speed loop summation point.
03.22 Speed offset fine

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | $0 \sim 255$ | \Rightarrow | 128 | | |

Used as a fine trim on the speed reference signal to correct, or introduce, a small offset.
A value of 0 gives an offset of -8 units, the default value gives zero offset and a value of 255 gives an offset of +8 units.

03.23	Zero speed threshold					
RW Uni						
\hat{y}	$0 \sim 255$	\Rightarrow	15			

The threshold may be adjusted to any value up to 25.5% of maximum speed. Refer also to 10.09 .

03.24 Derivative term source

The derivative term of the PID in the speed loop may use one of three sources

1 = Speed error 03.06
Damping changes in speed demand and feedback

2 = Speed reference 03.01 Velocity feed-forward

3 = Speed feedback 03.02 Damping on feedback only (feedback forcing).

03.25 Speed error filter

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup} \mid$ | $0 \sim 255$ | \Rightarrow | 128 | | |

$$
\begin{aligned}
\text { Filter time-constant } & =\frac{256}{6 \mathrm{f} \times(03.25)} \\
\text { where } f & =\text { supply frequency }
\end{aligned}
$$

A low-pass filter to reduce the effect on the speed error signal (03.04) of interference from a noisy tachogenerator (tachometer), for example.

03.26 Tachogenerator input

| | RO | Bi | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\hat{\Downarrow}$ | ± 1000 | \Rightarrow | | | |

Monitors the tacho input measurement. The tacho potentiometer is used to scale the feedback signal such that at full motor speed, $03.26=1000$. Units displayed $=0.1 \%$ of full speed per increment.

```
03.27 Reserved
\begin{tabular}{|l|c||c||l|l|l|}
\hline & RO & Bi & & & \\
\hline
\end{tabular}
```


03.28 Proportional gain $\mathbf{x} 4$

	RW	Bit				
$\hat{\rightharpoonup}$	0 or 1	\Rightarrow	0			

Setting this parameter at 1 will increase the speed loop proportional gain by a factor of 4 .

03.29 Speed loop gains / 8

	RW	Bit				
$\hat{\jmath}$	0 or 1	\Rightarrow	0			

When set the speed loop gains are reduced by a factor of 8 so that:

$$
\begin{aligned}
\text { PGAIN } & =\frac{03.09}{64} \\
\text { IGAIN } & =\frac{03.10 \times 6 \times f}{2048}
\end{aligned}
$$

Menu 04

Current Selection and Limits

The principal input is the speed loop output 03.07 in combination，for torque－or current－control modes， with the torque reference 04．08．These inputs become the current demand to which an offset or trim option may be applied．The result is then subject to an over－riding limitation derived from several sources including the speed feedback．Six bit－parameters determine the mode of control speed control，current control，number of quadrants， etc．

A feature in this menu is the facility to apply a second current limit（04．07）automatically refer to 04．10， 04.18 and 04.19 which allow current limit 2 to be applied after a chosen time delay．This is appropriate to applications where the initial load torque on start－up is high，but after some period becomes less，as with some mechanical mixing processes，for example．

The current demand signal is the controlling input to the current loop when the Drive is being operated in speed－control mode．The signal is subject to limitation by $04.04,04.05$ and 04.06 before being passed to the current loop．

Current demand final output，to the current loop （Menu 05）after limits have been applied．

04.03	Over－riding current limit				
RO Bi \hat{y} ± 1000 \Rightarrow					

This is the limiting value of current demand and is the result of the speed－dependent current taper calculation or I－limit 2 （if selected），whichever is the lower．

04．04 Current limit（taper start point）

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 人े | $0 \sim 1000$ | \Rightarrow | +1000 | | |

This parameter provides symmetrical current－ limitation for bridges 1 and 2 and is the datum level from which the current taper functions operate refer to 04.20 and 04.21 ．I－limit 1 can be used in application where the motor kW rating is somewhat less than that of the Drive，as an alternative to changing the fixed current－burden resistors．

04.05 Current limit bridge 1

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\vec{\imath}}$ | $0 \sim 1000$ | \Rightarrow | +1000 | | |

Determines the maximum limit of current demand when bridge 1 ，the positive bridge，is conducting．It causes any demand for current in excess of the limit set point to be ignored．

04．06 Current limit bridge 2

	RW	Uni			
个 $0 \sim 1000$ \Rightarrow +1000					

Determines the maximum limit of current demand when bridge 2 ，the negative bridge，is conducting．It causes any demand for current in excess of the limit set point to be ignored．

04．07 Current limit 2

	RW	Uni			
$\widehat{乡}$ $0 \sim 1000$ \Rightarrow					

Available as an additional current limit．Applies to both bridges．The Drive can be programmed，if desired，to select 04.05 automatically at a programmed time interval after a RUN signal．Refer to $04.10,04.18$ and 04．19．

	Torque reference					
		RW	Bi			
人	± 1000	\Rightarrow		+000		

This value is an input to the current loop and can be selected for use in applications requiring direct control of current (motor torque).

Current offset is used to apply a trim to the current demand 04.01.

04.10 Current limit bridge 2 selector

	RW	Bit			
$\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 0					

Set $04.10=1$ to select current limit bridge 2 . Can be caused to change automatically refer to 04.18 and 04.19.

04.11 Current offset selector

Set $04.11=1$ to select current offset.

04.12 Mode bit 0

Set $04.12=1$ to select. Operates in conjunction with 04.13 to configure the Drive for speed control or any of three modes of torque control. Refer to 04.13

04.13 Mode bit 1

	RW	Bit			
$\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 0 (not selected)					

Set $04.13=1$ to select. Operates in conjunction with 04.12 to configure the Drive for speed control or any of three modes of torque control, as follows:
$04.12=0$ and $04.13=0$
Speed control mode (default configuration).
$04.12=1$ and $04.13=0$
Basic current- or torque-control.
$04.12=0$ and $04.13=1$
Torque-control mode with speed override.
$04.12=1$ and $04.13=1$
Coiler/uncoiler control mode.

Speed mode control

The output of the speed loop becomes the current demand input into the current loop.

Basic current - or torque - control mode

In this mode, the torque reference 04.08 is the input to the current loop and is subject to the limitations of the over-riding current limit 04.03, the Bridge 1 and Bridge 2 limits 04.05 and 04.06, and to the current slew rate 05.04.

Torque-control mode with speed override Refer to Figs. 18 and 19.

In this mode, the output of the speed loop is clamped either to the value of the torque reference 04.08, or to zero according to whether the speed error 03.06 is positive or negative, and depending on whether the torque reference is positive or negative, ie dependent on relative polarities.

In the two motoring quadrants, speed is limited to the value of the final speed demand 03.01, preventing uncontrolled increase of speed when load is removed. The Drive should be adjusted to run at a slight overspeed when off load, in order to ensure adequate current demand at all speeds. In the two regenerative quadrants, the current demand set by torque reference 04.08 is disabled when speed is less than that set by the final speed demand 03.01. This prevents the reducing load torque resulting in reversal of rotation. The value of 03.01 should be zero.

a Q1 - Forward drive.
b Q2 - Reverse braking.
Positive torque, forward drive and reverse braking, are applied at the value of 03.01 when the speed error 03.06 is positive. When the speed error is negative, torque is zero.

Torque control with speed over-ride. Positive torque reference.
Fig 18

a Q4 - Forward drive.
b Q3 - Reverse braking.
Negative torque, forward braking and reverse drive, are applied at the value of 03.01 when the speed error 03.06 is negative.
When the speed error is positive, torque is zero.
Torque control with speed over-ride. Negative torque reference.
Fig 19

A disadvantage of this mode is that it cannot provide torque at a particular speed both accelerating and decelerating. Parameter 04.08 behaves as a controllable current limit in this mode.

Coiler/uncoiler control mode
Refer to Figs. 20 and 21.

This mode allows torque to be applied in either sense, for acceleration or deceleration, while preventing uncontrolled increase in speed or reversal if the load becomes zero. When the torque demand is in the sense opposite to that of speed feedback, this mode automatically selects zero speed reference.

For a coiler, the offset 01.04 should be set just slightly positive so that 03.01 is greater than the line speed reference. When a full reel (of a coiler) is decelerating, the torque demand may be negative. Since the speed feedback is positive, the speed reference is automatically made zero so that the speed error becomes negative. Both torque demand and speed error being negative, decelerating torque is applied.

For an uncoiler, the offset 01.04 should be set just slightly negative so that there is a negative speed error at zero speed. (Negative speed error is necessary to produce a negative torque to maintain tension at zero speed.) As the line speed reference increases, 03.01 becomes positive. A suitable scaling of the input should be applied such that 03.01 is always greater than the speed feedback, thus maintaining a positive speed error 03.06. Since the speed feedback is positive, zero speed is automatically selected whenever the torque demand is negative normal operation but if the torque demand becomes positive then the value of 03.01 becomes the speed demand, and accelerating torque is allowed, provided that the reel speed is not greater than 03.01.

For coiler/uncoiler applications, line speed reference corresponds to reel speed at minimum diameter.

Uncoiler accelerating. Positive torque demand, 03.01 is at set value. Negative torque demand (at-speed), $03.01 \rightarrow 0$ automatically, to maintain tension.

Fig 21

04.14 Quadrant 1 enable

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 人े | 0 or 1 | \Rightarrow | 1 (enabled) | | |

Quadrant 1 operation is defined as motoring in the forward direction, speed and torque both having positive values.

Quadrant 2 operation is defined as regenerating in the reverse direction, speed being negative and torque positive.

04.16 Quadrant 3 enable

Quadrant 3 operation is defined as motoring in the reverse direction, speed and torque both having negative values.

Quadrant 4 operation is defined as regenerating in the forward direction, speed being positive and torque negative.

04.18
 Enable automatic current limit bridge 2 change

| | RW | Bit | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\jmath}$ 0 or 1 \Rightarrow 0 (disabled) | | | | | |

When this bit is enabled, the current limit bridge 2 selector is automatically changed to 1 after a time interval set by 04.19. The Drive can be programmed to select 04.07 automatically at a programmed timeinterval (04.19) after a RUN signal.

04.19 Current limit timer

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 255$ | \Rightarrow | 000 | | |

A time interval up to 255 seconds can be programmed. If $04.18=1$, current limit bridge 2 is automatically selected when the set time elapses after a RUN command. This feature is appropriate to applications where the motor is short-time rated, such as mixing machinery, where the starting load is high and falls to a lower, constant value only after the machine has run for some time.

Sets a threshold value of speed feedback, beyond which 04.24 changes to 1 to indicate that the threshold has been exceeded, and is the starting point for taper 1 (if implemented). Armature current reduces, as a function of speed, at a rate defined by 04.22. This parameter can also be used as a general-purpose speed threshold.
If only one taper is used, it must be Taper 1. If both are used, Taper 1 must be the first.

04.21 Current taper 2 threshold

	RW	Uni			
人े	$0 \sim 1000$	\Rightarrow	+1000		

Sets a threshold value of speed feedback, beyond which 04.25 changes to 1 to indicate that the threshold has been exceeded, and is the starting point for taper 2 (if implemented). Armature current reduces, as a function of speed, at a rate defined by 04.23. This parameter can also be used as a general-purpose speed threshold.

04.22 Current taper 1 slope

	RW	Uni			
\hat{y}	$0 \sim 255$	\Rightarrow	000		

Sets the rate of change of armature current limit with respect to speed in either direction of rotation, above the threshold set by 04.20.
Scaling factor (refer to Fig. 22) $04.22=128 \times \Delta \mathrm{l}_{1}$ $\overline{\Delta n_{1}}$

Calculations of current taper gradients $1 \& 2$. Refer to text, parameters 04.22 and 04.23 .

Fig 22

04.23 Current taper 2 slope

	RW	Uni			
$\hat{\imath}$ $0 \sim 255$ \Rightarrow 000					

Sets the rate of change of armature I-limit with respect to speed in either direction of rotation, above the threshold set by 04.21 .
Scaling factor (refer to Fig. 22) $04.23=128 \times \Delta \mathrm{I}_{2}$ $\overline{\Delta n_{2}}$

04.24 Taper threshold 1 exceeded

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\imath}$ 0 or 1 \Rightarrow 0 | | | | | |

Set to 1 when the threshold set point of 04.20 is exceeded.

04.25 Taper threshold 2 exceeded

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

Set to 1 when the threshold set point of 04.21 is exceeded.

Menu 05

Current Loop

This is the final stage in the processing of the speed and torque references and feedbacks to determine the final firing angle signal. The normal principal input is the final current demand, which is subject to the slew rate limit, summed algebraically with the current feedback and further modified by whatever settings may have been applied to the group of Current Loop parameters.

Current feedback, after scaling, delivers a readable signal to display actual current in amps. Current feedback also is an important function in the protection of the Drive. The feedback signal is monitored in relation to the selected overload threshold, modified according to preprogrammed values for overload time. The provision of two parameters for overload timing allows settings to be applied so as to take account of the fact that the cooling time of a motor can be longer than its heating time.

For the Drive to operate the current ripple measured at terminal 11 which is a voltage signal indicating current feedback, must be a minimum of 0.6 V when there is no back emf i.e at zero speed. The current level measured at the point of continuous conduction with this level of ripple is 9.2% of the Drive rating. With software version V5 (or later), software parameter 05.29 allows the user to increase the current feedback burden by a factor of 1.6. The software scales the current feedback differently to compensate for the change in burden value. When 05.29 is set and the burdens have been changed, the minimum vale of ripple occurs at 5.7% of the Drive rating. The burdens should not be changed if the ripple at terminal is greater than 0.6 V .

The current feedback signal is derived from internal current transformers. It is used for closed-loop control and indication of the armature current, and to initiate motor protection.
05.02 Current feedback (amps)

The current feedback signal, modified by the scaling factor, becomes available as an indication in amps. Refer also to 05.05.

05.03 Firing angle

This is the output of the current loop algorithm, and the input reference to the ASIC, which generates the firing pulses. $05.03=1023$ indicates fully phased forward.

This parameter limits the maximum rate of change of current demand. Older types of motor, especially if of non-laminated construction, may have a tendency to flash over if the rate of change of current is too high for the inherent lag of the interpole windings.
Defined as:

$$
S=\frac{I_{\max } \times 6 f \times 05.04}{256}
$$

Where:

$$
\begin{aligned}
\mathrm{S} & =\text { slew rate in amps s }{ }^{-1} \\
\mathrm{f} & =\text { frequency of the power } \\
& \text { supply in } \mathrm{Hz} \\
\mathrm{I}_{\max } & =\text { max. current }(\mathrm{A})
\end{aligned}
$$

To restrict the rate of change of current, parameter 05.04 should be reduced.

05.05	Maximum current (scaling)					
		RW	Uni			
令	0~1999	\Rightarrow	Drive current rating			

The maximum output current, in amps, is scaled by this parameter. This does not have any effect on the motor protection. The setting for 05.05 is calculated as follows:

$$
\begin{array}{ll}
05.05=\frac{I_{\max }}{10} & \text { if } I_{\max }>1999 \mathrm{~A} \\
05.05=I_{\max } & \text { if } 200 \mathrm{~A}<I_{\max }<1999 \mathrm{~A} \\
05.05=I_{\max } \times 10 & \text { if } I_{\max }<200 \mathrm{~A}
\end{array}
$$

05.06					
Overload threshold					
RW Uni \hat{y} $0 \sim 1000$ \Rightarrow +700					

Sets the threshold of armature current feedback beyond which the current-time overload protection begins to integrate.

NOTE

To disable the overload trip, parameter 05.07 and 05.08 should be set to 0 .

05.07	Overload integrating time (heating)				
		RW	Uni		
今	0~255	\Rightarrow	030		S

Integrating time for 05.06. For use in conjunction with 05.08 , such that $05.07<05.08$.

Time t to trip is:

$$
\mathrm{t}=(05.07) \times \frac{1000-(05.06)}{(05.01)-(05.06)}
$$

Refer also to Menu 10, parameter 10.18.

NOTE

To disable the overload trip, parameter 05.07 and 05.08 should be set to 0 .
05.08 Overload integrating time (cooling)

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\jmath}$ | $0 \sim 255$ | \Rightarrow | 050 | | S |

Integrating time for 05.06. For use in conjunction with 05.07 , such that $05.07<05.08$.
Time t to reset is:

$$
\mathrm{t}=(05.08) \times \frac{1000-(05.06)}{(05.06)-(05.01)}
$$

Refer also to Menu 10, parameter 10.18.

NOTE

To disable the overload trip parameter 05.07 and 05.08 should be set to 0 .

To autotune the current loop during start up:

- Disconnect the field of the motor if a fixed field is being used.(Open terminals L11 and L12 in the European version of the Drive).
- Observe approved safety procedures!
- Enable autotune set $05.09=1$.
- Enable the Drive by the input TB4-31.

When the autotune process is complete, the Drive ready relay will open for 50 ms after which the autotune parameter will be automatically set to disable $(05.09=0)$. The purpose of this process is to allow the autotune sequence to be started when a run permit is present but to return the Drive to a safe condition when the autotune is complete. It may be necessary to clamp the motor shaft if it tends to rotate during this procedure.

NOTE

1 The foregoing assumes that the Drive ready relay is interlocked with any run permit that is present.
2 If the motor is being operated with field control (Menu 06), the field will be turned off automatically.
3 Alters parameters 5.12-5.15.

The endstop allows the armature voltage to rise, during regeneration, to $1.16 \times$ supply voltage. On very soft supplies the endstop may be too close to the crossover point. Setting $05.10=1$ increases the safety margin but reduces the maximum regenerated armature voltage to $1.05 \times$ supply voltage.
Setting this parameter may be necessary in series 12 pulse systems.

Monitors the value of the integrating current-time overload. When the value reaches the trip point determined by 05.06, 05.07 and 05.08, an overload trip occurs. The overload trip will operate when 05.11 reaches the value given by:

$$
[1000-(05.06)] \times \frac{10}{16}
$$

The rate at which 05.11 increases or decreases is controlled by the values of 05.07 and 05.08 respectively.

```
NOTE
```

To disable the overload trip parameter 05.07 and 05.08 should be set to 0 .
05.12 Discontinuous integral gain

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 255$ \Rightarrow 16 | | | | | |

Set by the Start-up Autotune parameter 05.09. This parameter is set to correct any errors in the prediction of firing angle in the discontinuous current region. If 05.15 is set correctly, 05.12 has little effect, but if set too high, instability can occur.
05.13 Continuous proportional gain

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 昘 | $0 \sim 255$ | \Rightarrow | 16 | | |

Set by the Start-up Autotune parameter 05.09. This parameter allows the current loop to follow very closely a step-change in current. If set too high, there will be an overshoot. If set too low, the new current value will be achieved unduly slowly.

$$
\text { Gain applied }=\frac{\text { value of } 05.13}{256}
$$

05.14 Continuous integral gain

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 255$ | \Rightarrow | 16 | | |

Set by the Start-up Autotune parameter 05.09. Its value will depend on the motor time-constant. Increasing the value of 05.14 will improve the response of the current loop but at the risk of instability.
If this parameter is set too low an error between the value of the 'Current Demand' and the 'Current Feedback' can result.

$$
\text { Gain applied }=\frac{\text { value of } 05.14}{512}
$$

NOTE

This parameter is not set by the continuous autotune routine.

This parameter is used to scale the current demand such that the control loop correctly predicts the firing angle in the discontinuous current region. It is set automatically by the Start-up Autotune parameter 05.09.

This parameter is reserved.

05.17 Inhibit firing

	RW	Bit			
\hat{y}	0 or 1	\Rightarrow	0, enabled		

If set to 1 , disables thyristor (SCR) firing (both bridges), and resets acceleration and deceleration ramps.
05.18 Enable standstill logic

	RW	Bit			
$\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 1, enabled					

When enabled, causes the firing angle to be fully phased back when the Drive has received a STOP command and when the speed falls below 0.8% of maximum speed. After a short time delay, the thyristor (SCR) firing is stopped also. This prevents creep and is used in applications in which there is no requirement to maintain motor torque at standstill. Refer also to 05.19.

005.19						
Standstill mode						

$05.19=0 \quad$ Standstill logic is enabled after STOP command or zero reference.
$05.19=1 \quad$ Standstill logic enabled after STOP command only.

Setting $05.19=1$
has the effect of not enabling the standstill logic when the stopping signal is given by the reference alone. This condition therefore allows creep speeds, shaft orientation, and other functions which take place close to zero speed, while preventing any creep after a STOP command.
05.20 Enable direct firing angle control

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 0, disabled | | | | | |

When enabled, the firing angle 05.03 is controlled by the value of the post-ramp reference 02.01 . This mode is valuable for system diagnosis, particularly where instability is present, since it allows the Drive to operate without the influence of either the speed loop or the current loop, thereby eliminating their effect upon the system.

NOTE

This facility must be used with caution. When the reference is 02.01 , there is no protection against excessive acceleration, output voltage or current other than the instantaneous overcurrent trip. Also take care to reset $05.20=0$ after completion of tests.

05.21 Enable bridge 2 lockout

	RW	Bit			
\hat{y} 0 or 1 \Rightarrow 0 , disabled					

Requires to be set only for parallel 12-pulse 4Q system installations comprising two Drives which are to share load, to prevent one Drive changing bridges while the other is still conducting.
05.22 Disable adaptive control

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 0, enabled | | | | | |

Setting $05.22=1$ disables adaptive control. When adaptive control is enabled (default status) the current loop employs two different algorithms, one of which applies high gain in the discontinuouscurrent region. This is unsuitable for some applications, such as non-motor loads, for which adaptive control should be disabled.

Enabling this function configures the Drive to deliver normal and delayed firing pulses to two power boards. The function cannot be enabled if either of the Bridge 2 quadrants 04.16 and 04.17 are enabled.
In 6-pulse thyristor (SCR) Drives, the current drawn from each phase of the supply is not continuous. Out of each 180° of the AC supply cycle, full load current is drawn for 120° and none for the remaining 60°. This imposes a degree of harmonic distortion on the supply.
Twelve-pulse thyristor (SCR) Drives draw current for the full 360° of the AC supply cycle, and the current waveform approximates very closely to a sine wave, with much-reduced distortion as a result.
A further advantage is the much smoother DC current output from 12-pulse Drives, which is a benefit in many applications.
Two power boards are Driven by an MDA1 PCB for 4Q series 12 pulse.

	05.24	Series 12 -pulse operation						
			RW	Bit				
令		0 or 1	5			disabled		

This parameter should be set for operation in either single- or four-quadrant 12-pulse mode. Parameter 05.23 (see above) is read by the software only at power-on and during a cyclic reset (a reset when the Drive is disabled). If either of the Bridge 2 quadrants is enabled when 05.23 is read, the outputs are not diverted within the ASIC and 05.23 is set to 0 .

NOTE

Series 12-pulse mode is phase-sensitive. The rotation on the stacks must be in the sequence L1, L2, L3 (10.11 = 1).
05.25 Parallel 12 - pulse operation

	RW	Bit			
$\hat{\rightharpoonup} \mid$	0 or 1	\Rightarrow	0, disabled		

This parameter instructs the Drive to operate in parallel 12-pulse mode and should be set for operation in either single- or four-quadrant mode. For 4-quadrant operation, parameter 05.21 (see above) must be set to 1 and the F10 input of each Drive must be connected to the ST5 output of the other. Also, the control OV terminals of both Drives must be connected.
05.26 Extra-safe bridge change

	RW	Bit			
\hat{y} 0 or 1 \Rightarrow 0 disabled					

When enabled ($=1$) parameter 05.26 applies an additional safety margin of 1 supply cycle to the bridge changeover logic. This may be required for highly inductive loads, such as a motor field winding.

05.27	Continuous autotune				
		RW	Bit		
令	0 or 1	\Rightarrow	0 , disabled		

When set, enables the continuous auto-tune which continuously monitors the motor current ripple and adjusts the current loop gains for optimum performance. The commissioning autotune should still be carried out because parameter 05.14 is not set by the continuous autotune.
Calculation of the gains is suspended when the voltage spill-over loop becomes active so that the gains are not increased when the field is weakened.
This function does not operate when the Drives are set-up in serial 12-pulse.

05.28
 Reduced hysteresis for bridge

 changeover

There is hysteresis on a bridge changeover to prevent oscillation between the two bridges under lightly loaded conditions. In applications which require fine control of the current the bridge change-over hysteresis can be reduced from 1.6% to 0.2% of Drive maximum current by setting this parameter.
05.29 Increased current feedback

	RW	Bit			
\hat{y} 0 or 1 \Rightarrow 0, disabled					

If the Drive is being used with a motor with a high inductance armature such as elevator motors the current feedback burden resistors can be increased (by a factor of 1.6 times) to increase the current feedback signal. This improves the current control at low levels of current. It is necessary to set this bit parameter if the burdens have been increased so that the software allow the current limits to remain unchanged.

Setting this parameter affects 05.15 so that it does not have to be set close to it's maximum value of 255 when continuous conduction occurs at very low currents. The autotune routines have been modified to take this into account.

Menu 06

Field Control

The Mentor II is equipped with field control as part of the on-board software. If a motor is being used with an uncontrolled (fixed) field supply, this menu does not apply.

Provision is made for programming two selectable values of maximum field current. Further, the lower value of maximum field current can be controlled by a programmable timer so that, when the Drive is not running, the field can be switched automatically to economy mode.

The resulting field current demand is summed algebraically with the field current feedback to produce a current error which is the input to the field current loop. The output of the field current loop is the firing angle, subject to the front endstop limit.

The field current can alternatively be controlled directly by either of the maximum field parameters 06.08 and 06.09 via a programmable input or by application software, and there is a facility for direct control of the firing angle, useful for diagnosis.

Field current demand is the output of the back-emf voltage loop, subject to programmed maximum and minimum field current values. The voltage loop compares the calculated back-emf value with a programmed set point which is used as factor in determining field current demand.

The voltage loop output, and consequently the field current demand, is maximum when the calculated back-emf is less than the setpoint value. When the calculated value exceeds the set point value (at base speed) the voltage loop reduces the field current demand to regulate the calculated back-emf to the set point value.

Alternatively, the user may wish not to use the voltage loop, but to enter a current demand directly. The user can set two maximum field current parameter values. In this mode, the value of the back-emf set point should be set to maximum, such that the voltage loop always demands
maximum field current. The current demand is then the selected maximum field current parameter.

The calculated motor back emf based on armature voltage minus IR compensation value 2, 06.05. Feedback to the emf loop in spillover mode.

06.02 Field current demand

| | RO | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{r} | $0 \sim 1000$ | \Rightarrow | | | |

The current demand from the emf loop, subject to the limits of $06.08,06.09$ and 06.10 .
06.03 Field current feedback

Feedback to the field current loop
06.04 Firing angle

Scaling $06.04=1000$ corresponds to fully phased forward
06.05 IR compensation 2 output

| | RO | Bi | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} | ± 1000 | \Rightarrow | | | |

The value resulting from the application of 06.06 to the speed error integral input.
06.06
IR compensation 2

		RW	Uni			
\hat{y}	$0 \sim 255$	\Rightarrow	000			

A programmable factor used for calculation of the armature IR-drop as correction to measured armature voltage, to allow the back emf to be computed.

If $06.20=0$:

$$
06.05=\frac{(03.08) \times(06.06)}{2048}
$$

If $06.20=1$:

$$
06.05=\frac{(04.02) \times(06.06)}{2048}
$$

Example of setting of 06.06

$$
\begin{array}{ll}
\text { Armature voltage } & =400 \mathrm{~V} \\
\text { Armature current } & =200 \mathrm{~A} \\
\text { Armature resistance } & =0.1 \Omega
\end{array}
$$

$1 \times R=20 \mathrm{~V}$
For a M210 with 200A armature current

$$
\begin{aligned}
03.08 & =635 \text { units } \\
\text { so, } \quad 06.06 & =\frac{20 \times 2048}{635}=64 \text { units }
\end{aligned}
$$

$$
06.07=380 \mathrm{~V}
$$

06.07 Back emf set point

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $0 \sim 1000$ | \Rightarrow | +1000 | V | |

The programmable value of the armature back emf in volts, at which the field begins to weaken. Defined as the voltage at which base speed is reached.

06.08 Maximum field current 1

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | $0 \sim 1000$ | \Rightarrow | +1000 | | |

Programmable value of the maximum current demand of the emf loop. If the field control is to be used in current mode, this parameter would become the current reference of the field control loop, and the back emf set point should normally be set to maximum to prevent spillover occurring; alternatively, if motor overvoltage protection by spillover is required, the back emf set point should be set to maximum armature voltage.

06.09 Maximum field current 2

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\sqrt{b}}$ $0 \sim 1000$ \Rightarrow +500 | | | | | |

Alternative to 06.08 , for use as an economy setting. Refer to 06.12, 06.14 and 06.15.

06.10 Minimum field current

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ $0 \sim 1000$ \Rightarrow +500 | | | | | |

The minimum value of current demand, to prevent excessive field weakening, for example with overhauling loads.

\subsection*{06.11 Field current feedback scaling 		RW	Uni			
\hat{y}	$201 \sim 216$	\Rightarrow	204			}

Parameter 06.11 permits the user to apply a scaling factor to the current feedback. Output is the value 06.03 . The max. current rating is 2 A or 8 A according to the position of link (jumper) J1.

J1 position	$\begin{gathered} 06.11 \\ \text { setting } \end{gathered}$	MDA3 amps max.
2 A	201	0.5
2A	202	1.0
2A	203	1.5
2A	204	2.0
8A	205	2.5
8A	206	3.0
8A	207	3.5
8A	208	4.0
8A	209	4.5
8A	210	5.0
8A	211	5.5
8A	212	6.0
8A	213	6.5
8A	214	7.0
8A	215	7.5
8A	216	8.0

NOTE

Mentor II can be used with an Issue (rev) 1 MDA3 card, maximum current 5A. Parameter 06.11 then has the range 101 to 110 and a field current range from 0.5A to 5A in steps of 0.5A. Field control can alternatively be implemented by the FXM5 Field Control Unit (Chapter 9) for a maximum field current of 20 A .

06.12 Field economy timeout

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | $0 \sim 255$ | \Rightarrow | 030 | | S |

Permits the Drive to be configured to select maximum field 2 (a reduced setting) automatically after the Drive has been disabled for a period (in seconds) defined by the value chosen for this parameter. Provided so that the windings do not overheat if the Drive is stopped and the motor ventilation is switched off, or to maintain a reduced level of field current to prevent condensation when the motor is not in use.

06.14	Maximum field 2 selector					
		RW	Bit			
人	0 or 1	\Rightarrow	0, disabled			

Set to 1 to engage maximum field 2. Controlled automatically by field economy timeout function if 06.15 is set to 1 . Maximum field 2 is selected after a time delay (refer to 06.12) when a Drive disable signal is given.

06.15	Enable field economy timeout				
RW Bit \hat{y} 0 or 1 \Rightarrow 0 , disabled					

When enabled ($=1$), parameter 06.14 is automatically controlled by the field economy timeout function when a Drive enable signal is removed. When the timeout is disabled, parameter 06.14 becomes user R/W.

06.16	Field current loop integral gain				
RW Bit \hat{y} 0 or 1 \Rightarrow 1, normal gain					

When set to $=0$, the field current loop integral gain is increased to allow the loop to track the current demand more closely. However, this may result in instability and so should only be used if a fast change in flux is required and the field timeconstant is low.
06.17 Voltage loop integral gain

	RW	Bit			
$\hat{\sqrt{v}}$	0 or 1	\Rightarrow	0 , disabled		

Set $06.17=1$ to double the integral gain if less overshoot is desired.
06.18 Enable speed gain adjustment

	RW	Bit			
$\hat{\Delta}$ 0 or 1 \Rightarrow 0, disabled					

This parameter adjusts the speed loop gains (menu 03) to compensate for the weakening of the field flux in field control mode so that the torque response remains substantially constant throughout the whole speed range. Defined as:

$$
G=\frac{06.08}{06.02}
$$

Where $\mathrm{G}=$ Speed loop gain adjustment factor

06.19 Direct firing angle control

	RW	Bit			
\hat{y} 0 or 1 \Rightarrow 0, disabled					

Enables 06.09 to control the firing angle directly, subject only to the front endstop. Permits operation without the voltage or the current loop, for the purpose of diagnosis.

NOTE

In this mode there is no protection against excessive field voltage and current.

06.20 Alternative IR comp. 2 selector

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | 0 or 1 | \Rightarrow | 0 (= 03.08) | | |

Determines the source of the IR Compensation 2. The source selection may be either the Speed Error Integral 03.08 (set to 0) or the final current demand 04.02 (set to 1).

06.21 Firing angle front endstop

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 㐱 | $0 \sim 1000$ | \Rightarrow | +1000 | | |

Restricts the advance of the firing angle in cases where 180° advance would result in overvoltage being applied to the field windings.
This can be used when the supply voltage is much higher than the required field voltage to prevent an overvoltage condition.
$06.21=1023-\frac{768 \cos ^{-1}}{180^{\circ}}\left[\left(\frac{V_{\mathrm{DC}} \cdot \pi}{\sqrt{2 . V_{S}}}\right)^{-1}\right]$
Where $\quad V_{D C}=$ Required field voltage
$V_{S}=$ Supply voltage
06.22 Full or half control selector

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0, half control | | | | | |

Provides the option of full or half control. Available only with the FXM5 Field Controller. To use FXM5 in Full Control mode, set 06.22 = 1 and LK3 to Full Control position.
06.23 Reduce gains by factor of 2

	RW	Bit				
$\hat{\rightharpoonup} \quad$	0 or 1	\Rightarrow	0			

Setting this parameter to 1 reduces the field current gains by a factor of 2 .

06.24 Reduce gains by factor of 4

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

Setting this parameter to 1 reduces the field current gains by a factor of 4 .
Setting both 6.23 and 6.24 to 1 will result in the gains being reduced by 8 .

Menu 07

Analog Inputs \& Outputs

Scaling parameters have a multiplying range from 0.001 to 1.999 (a multiplier of zero would give the parameter a null value).

Source and Destination parameters define a parameter to be used as either input or output, thereby defining the function of the programmable input and output terminals.

Menu 07 contains three analog-input/output groupings. There are two separate groups of analog input. The first is a 12-bit analog input which is normally used as the speed reference input (refer to Menu 01, Diagram B), but can alternatively be programmed to any real R/W (but not integer) destination.

High accuracy is achieved by voltage-to-frequency conversion. The terminal can be programmed as a voltage input or as a current loop input, with options $0-20 \mathrm{~mA}, 20-0 \mathrm{~mA}, 4-20 \mathrm{~mA}$ or $20-4 \mathrm{~mA}$.
The second group provides a flexible means for scaling and assigning destinations to the four general purpose inputs GP1, GP2, GP3 and GP4, all of which are 10-bit resolution.

Finally, three analog outputs, via digital-to-analog (DAC) converters, feature programmable-source parameters and scaling.

Displays the value of the analog signal applied to terminal TB1-04. Can be used as a generalpurpose input for monitoring, or for Processor 2 special applications.

07.02 General purpose input 2

| | RO | Bi | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}+$ | ± 1000 | \Rightarrow | | | |

Displays the value of the analog signal applied to terminal TB1-05. Can be used as a generalpurpose input for monitoring, or for Processor 2 special applications.

07.03 General purpose input 3

	RO	Bi			
	$\hat{\jmath}$ ± 000 \Rightarrow				

Displays the value of the analog signal applied to terminal TB1-06. Can be used as a generalpurpose input for monitoring, or for Processor 2 special applications.

07.04 General purpose input 4

Displays the value of the analog signal applied to terminal TB1-07. Can be used as a generalpurpose input for monitoring, or for Processor 2 special applications.

07.05 Speed reference input

		RO	Bi		
\hat{y}	± 1000	\Rightarrow			

Displays the value of the analog speed demand at terminal TB1-03, or master encoder (pulse tach.) reference via PL4, and after scaling by 07.24 ; dependent on reference mode being selected by 07.25 .

07.06 RMS input voltage

| | RO | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | $0 \sim 1000$ | \Rightarrow | | V | |

Monitors the value of the voltage applied to line input terminals L1, L2, L3 (the thyristor (SCR) stack supply).

07.07 Heatsink temperature

| | RO | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\jmath}$ $0 \sim 1000$ \Rightarrow ${ }^{\circ} \mathrm{C}$ | | | | | |

Monitors the temperature of the thyristor (SCR) stack on those Drives provided with thermistors.

07.08 DAC 1 source

Selects the source of analog output 1 via terminal TB2-12.

07.09 DAC 2 source

Selects the source of analog output 2 via terminal TB2-13.

Selects the source of analog output 3 via terminal TB2-14.

NOTE

Of the following invisible parameters, Scaling parameters have a multiplying range from 0.000 to 1.999
Source and Destination parameters define a parameter to be used as either input or output, thereby defining the function of the programmable input and output terminals.

07.11 GP1 destination

	RW	Uni			

Selects the destination of analog input 1 via terminal TB1-04.
A changed value becomes effective only when the RESET pushbutton is pressed.

07.12 GP2 destination

| | RW | Uni | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | $0 \sim 1999$ | \Rightarrow | +408, torque ref. | | |

Selects the destination of analog input 2 via terminal TB1-05.
A changed value becomes effective only when the RESET pushbutton is pressed.
07.13 GP3 destination

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 1999$ \Rightarrow +119 , speed ref. 3 | | | | | |

Selects the destination of analog input 3 via terminal TB1-06.
A changed value becomes effective only when the RESET pushbutton is pressed.

07.14 GP4 destination

	RW	Uni			
$\hat{\imath}$	$0 \sim 1999$	\Rightarrow	+120, speed ref. 4		

Selects the destination of analog input 4 via terminal TB1-07.
A changed value becomes effective only when the RESET pushbutton is pressed.

07.15 Speed reference destination

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 1999$ | \Rightarrow | +117, speed ref. 1 | | |

Selects the destination of speed reference 07.05.
A changed value becomes effective only when the RESET pushbutton is pressed.

Sets the scaling for the signal from source GP1 via terminal TB1-04.

$$
\text { Scaling factor }=\frac{07.16}{1000}
$$

07.17 GP2 scaling

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 1999$ | \Rightarrow | +1000 | | |

Sets the scaling for the signal from source GP2 via terminal TB1-05.

$$
\text { Scaling factor }=\frac{07.17}{1000}
$$

Sets the scaling for the signal from source GP3 via terminal TB1-06.

$$
\text { Scaling factor }=\frac{07.18}{1000}
$$

Sets the scaling for the signal from source GP4 via terminal TB1-07.

$$
\text { Scaling factor }=\frac{07.19}{1000}
$$

07.20 Speed reference scaling

		RW	Uni		
\hat{y}	$0 \sim 1999$	\Rightarrow	+1000		

The factor by which 07.05 is multiplied to produce the speed reference.

$$
\text { Scaling factor }=\frac{07.20}{1000}
$$

07.21 DAC 1 scaling

| | RW | Uni | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 食 | $0 \sim 1999$ | \Rightarrow | +1000 | | |

Sets the scaling for signals output from DAC1 TB2-12.

$$
\text { Scaling factor }=\frac{07.21}{1000}
$$

07.22 DAC 2 scaling

	RW	Uni			
$\hat{\zeta}$ $0 \sim 1999$ \Rightarrow +1000					

Sets the scaling for signals output from DAC2 TB2-13.

$$
\text { Scaling factor }=\frac{07.22}{1000}
$$

07.23 DAC 3 scaling

Sets the scaling for signals output from DAC3 TB2-14.

$$
\text { Scaling factor }=\frac{07.23}{1000}
$$

Sets the scaling for signals from the reference encoder (pulse tach.) connected to terminal socket PL4. The value should be set to correspond with the maximum speed of the motor and with the number of pulses-per-revolution of the encoder.
To calculate the scale factor:

$$
\text { Scale factor }=\frac{750 \times\left(10^{6}\right)}{\mathrm{N} \times \mathrm{n}}
$$

where
$N=$ number of pulses per revolution
$\mathrm{n}=$ max speed of motor in rpm.
Default value is determined on the basis of a 1024line encoder (pulse tach.), and a maximum speed of 1750 rpm . Maximum frequency for the encoder is 105 kHz .

	Encoder reference selector				
		RW	Bit		
人	0 or 1 \Rightarrow 0 , analog ref.selected				

$0=$ analog reference selected.
1 = encoder (pulse tach.) selected.
Selects either the analog signal at terminal TB1-03 or the encoder (pulse tach.) input via PL4 as the source of speed reference signal.

07.26 Current input selector

	RW	Bit			
兮 0 or 1 \Rightarrow 0, voltage input selected					

Configures the speed input terminal (TB1-03) to accept either a voltage or a 20 mA input signal.

07.27 Current sense inverter

In conjunction with 07.28 , configures 20 mA current loop input.

Input	$\mathbf{0 7 . 2 7}$	$\mathbf{0 7 . 2 8}$
$0-20 \mathrm{~mA}$	0	0
$20-0 \mathrm{~mA}$	1	0
$4-20 \mathrm{~mA}$	0	1
$20-4 \mathrm{~mA}$	1	1

07.284 mA offset selector

	RW	Bit				
$\hat{\rightharpoonup}$	0 or 1	\Rightarrow	0			

In conjunction with 07.27 , configures 20 mA current loop input.
When a 4 mA offset is being used, the Drive will trip if it senses that the current is $<3.5 \mathrm{~mA}$ indicating loop open.
07.29 Invert GP3 and GP4 analog inputs

	RW	Bit				
\hat{y}	0 or 1	\Rightarrow	0			

When set to 1 the polarity of GP3 and GP4 analog inputs will be inverted.
The value of 07.03 and 07.04 are not affected and will indicate the polarity of the voltage applied to terminals TB6 and TB7.

Menu 08

Digital Inputs

	F1 input run permit					
		RO	Bit			
令	0 or 1	\Rightarrow		0		

0 = stop Drive
1 = start enabled
Monitors the Drive start-permit control input from terminal TB3-21 and indicates status. This input performs an over-riding Drive stop function in speed control mode as follows
The input must be active in order that the Drive can start.
If the input becomes inactive, 08.01 causes the pre-ramp reference 01.03 to be set to zero.
The Drive will stop unless 02.03, ramp hold, is active.

08.02 F2 input inch reverse

$0=$ input not active
1 = input active
Monitors the control input from terminal TB3-22 and indicates status. The Drive will respond to this input as inch reverse command only if the external logic controls are enabled $(08.21=0)$. Also its function is freely programmable.

$0=$ input not active
1 = input active
Monitors the control input from terminal TB3-23 and indicates status. The Drive will respond to this input as inch forward command only if the external logic controls are enabled ($08.21=0$). Also its function is freely programmable.

08.04 F4 input run reverse

$0=$ input not active
1 = input active
Monitors the control input from terminal TB3-24 and indicates status. The Drive will respond to this input as run reverse command only if the external logic controls are enabled $(08.21=0)$. Also its function is freely programmable.
This is a latched input parameter 01.11 will not revert to 0 if the input is removed, provided that $08.21=0$.

08.05 F5 input run forward

	RO	Bit			
$\hat{\rightharpoonup}$	0 or 1	\Rightarrow	0		

$0=$ input not active
1 = input active
Monitors the control input from terminal TB3-25 and indicates status. The Drive will respond to this input as run forward command only if the external logic controls are enabled $(08.21=0)$. Also its function is freely programmable.
This is a latched input parameter 01.11 will not revert to 0 if the input is removed, provided that $08.21=0$.

08.06 F6 input

	RO	Bit			
\hat{y} 0 or 1 \Rightarrow 0					

$0=$ input not active 1 = input active
Monitors the control input from terminal TB3-26 and indicates status.

[^0]Effective only after RESET.

$0=$ input not active
1 = input active
Monitors the control input from terminal TB3-28 and indicates status.

0 = input not active
1 = input active
Monitors the control input from terminal TB3-29 and indicates status.
$08.10 \quad$ F10 input

$0=$ input not active
1 = input active
Monitors the control input from terminal TB3-30 and indicates status.

0 = disable
1 = enable
Monitors the Drive enable input from terminal TB431 and indicates status. Input must be active for the Drive to operate. When the Drive is disabled by disconnecting the input, all firing pulses are switched off after a 30 ms delay. If the Drive is running when this occurs, the result is a coast-stop and ramps reset.

Defines the destination of external logic input at terminal TB3-22.

08.13 F3 destination

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\Delta}$ $0 \sim 1999$ \Rightarrow +000 | | | | | |

Defines the destination of external logic input at terminal TB3-23.
Effective only after RESET.

08.14 F4 destination

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\imath}$ | $0 \sim 1999$ | \Rightarrow | +000 | | |

Defines the destination of external logic input at terminal TB3-24.
Effective only after RESET.

08.15 F5 destination

	RW	Uni			
\hat{y}	$0 \sim 1999$	\Rightarrow	+000		

Defines the destination of external logic input at terminal TB3-25.
Effective only after RESET.

08.16 F6 destination

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 1999$ | \Rightarrow | +000 | | |

Defines the destination of external logic input at terminal TB3-26.
Effective only after RESET.

08.17 F7 destination

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | $0 \sim 1999$ | \Rightarrow | +000 | | |

Defines the destination of external logic input at terminal TB3-27.
Effective only after RESET.

08.18 F8 destination

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $0 \sim 1999$ | \Rightarrow | +000 | | |

Defines the destination of external logic input at terminal TB3-28.
Effective only after RESET.

	F9 destination					
		RW	Uni			
合	0~1999	\Rightarrow	+000			

Defines the destination of external logic input at terminal TB3-29.
Effective only after RESET.

Defines the destination of external logic input at terminal TB3-30.
Effective only after RESET.

08.21	Disable normal logic functions					
		RW	Bit			
匈	0 or 1	\Rightarrow	0			

$0=$ enable normal logic function
1 = disable normal logic function
Default 0
If set to enable ($=0$), this parameter configures logic inputs in the following manner -
F2 TB3-22 Inch Reverse
F3 TB3-23 Inch Forward
F4 TB3-24 Run Reverse
F5 TB3-25 Run Forward
If set to disable (=1), the logic inputs must be programmed by the user. A programmable input can be used to control parameter 01.11(Reference ON) only if a RUN PERMIT signal is present.

See also parameters 08.31 to 08.34 .

08.22 Invert input F2

08.23 Invert input F3
08.24 Invert input F4
08.25 Invert input F5
08.26 Invert input F6
08.27 Invert input F7
08.28 Invert input F8
08.29 Invert input F9
08.30 Invert input F10

	RW	Bit				
$\hat{\rightharpoonup}$	0 or 1	\Rightarrow	0			

$0=$ not invert
1 = invert logic function
08.31 Enable inch reverse

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

$0=$ not enable
1 = enable Inch Reverse
When $08.21=1$, normal logic functions disabled, 08.31 can enable Inch Rev.

$0=$ not enable
1 = enable Inch Forward
When $08.21=1$, normal logic functions disabled, 08.32 can enable Inch Fwd.

08.33 Enable run reverse

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

$0=$ not enable
1 = enable Run Reverse
When $08.21=1$, normal logic functions disabled, 08.33 can enable Run Rev.

08.34 Enable run forward

	RW	Bit				
\hat{y}	0 or 1	\Rightarrow	0			

$0=$ not enable
1 = enable Run Forward
When $08.21=1$, normal logic functions disabled,
08.34 can enable Run Fwd.

Menu 09

Status Outputs

Status Output parameters define a parameter to be used as a source，thereby defining the function of programmable output terminals．

Menu 09 contains three status source groupings， each of which can be inverted．The two sources ST1 and ST2 can be combined in any convenient configuration for output to terminals TB2－15 and TB2－16．The second group selects from sources ST3，ST4，ST5 for output to TB2－17，TB2－18，TB2－ 19 respectively，or source ST6（relay output）． Delays 09.12 and 09.18 apply to status outputs ST1 and ST2 in $0->1$ transitions．
In $1->0$ transitions the effect is immediate，without delay．

09.01	Status 1 output					
09.02	Status 2 output					
09.03	Status 3 output					
09.04	Status 4 output					
09.05	Status 5 output					
09.06	Status 6 output（relay）					
		RO	Bit			
令	0 or $1 \Rightarrow$					
09.07	Status 1 source 1					
		RW	Uni			
匈	0～1999 $\quad \Rightarrow \mid$		＋111			
09.08	Invert status 1 source 1					
	RW		Bit			
令	0 or $1 \quad \Rightarrow$		0			
09.09	Status 1 source 2					
	RW		Uni			
全	0～1999 \Rightarrow		000			

09.10 Invert status 1 source 2

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow +000 | | | | | |

09.11 Invert status 1 output

09.12 Status 1 delay

09.13 Status 2 source 1

09.14 Invert status 2 source 1

09.15 Status 2 source 2

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 1999$ | \Rightarrow | 000 | | |

09.16 Invert status 2 source 2

09．17				
Invert status 2 output				
RW Bit \hat{y} 0 or 1 \Rightarrow 0				

09.20 Invert status 3 output

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

09.21 Status 4 source

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| \hat{y} $0 \sim 1999$ \Rightarrow +1003 | | | | | |

09.22 Invert status 4 output

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

09.23 Status 5 source

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 1999$ \Rightarrow +1006 | | | | | |

09.25 Status 6 source (relay)

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 1999$ \Rightarrow +1009 | | | | | |

Menu 10

Status Logic \& Diagnostic Information

All real (not bit) RO parameters are frozen at the instant of tripping as an aid to diagnosis of the fault. They remain in this condition until the Drive is reset.

10.01						
Forward velocity						
RO Bit \hat{b} 0 or 1 \Rightarrow						

$0=$ Drive stationary or running in reverse 1 = Drive running forward at >zero speed threshold

Forward direction defined as follows:
When tachometer feedback selected, terminal TB1-09 negative with respect to terminal TB1-10.

When armature voltage feedback selected, terminal A1 positive with respect to terminal A2.

When encoder (pulse tach.) feedback selected, A-channel leads B-channel.

	Reverse velocity					
		RO	Bit			
人	0 or $1 \quad \Rightarrow$					

0 = Drive stationary or running forward
1 = Drive running in reverse at >zero speed threshold

Reverse direction defined as follows:
When tachometer feedback selected, terminal TB1-09 positive with respect to terminal TB1-10.

When armature voltage feedback selected, terminal A1 negative with respect to terminal A2.

When encoder (pulse tach.) feedback selected, A-channel lags B-channel.

NOTE

If $10.01=10.02=0$, the motor is either stationary or running at <zero speed threshold. In this condition, $10.09=1$ and the Zero Speed LED illuminates on the keypad (and RL2 is turned on, if programmed to indicate zero speed).

10.03 Current limit

$0=$ Drive not in current limit 1 = Drive in current limit Indicates that the sum of the current demand 04.01 and the offset 04.09 is being limited by the current limit over-ride 04.03 or by one of the bridge limits.
10.04 Bridge 1 enabled

0 = disabled
1 = enabled
Indicates that thyristor (SCR) bridge 1 (the forward or positive bridge) is being fired. Does not necessarily indicate that the bridge is conducting, since conduction depends on firing angle and operating conditions.

10.05 Bridge 2 enabled

	RO	Bit			
\hat{u} 0 or 1 \Rightarrow					

0 = disabled
1 = enabled
Indicates that thyristor (SCR) bridge 2 (the reverse or negative bridge) is being fired. Does not necessarily indicate that the bridge is conducting, since conduction depends on firing angle and operating conditions.

10.06 Electrical phase-back

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow | | | | | |

$0=$ firing pulses not phased back
1 = firing pulses phased back (at standstill)
Indicates that the firing pulses are being phased back by the action of the standstill function. Refer to 05.18 and 05.19.

10.07 At speed

$0=$ Drive not at speed
1 = Drive at speed
Indicates that the Drive has attained set speed, post-ramp reference 02.01 = pre-ramp reference 01.03, and also that comparison of final speed demand 03.01 with speed feedback 03.02 results in a speed error of $<1.5 \%$ of maximum speed. External signal also provided through open collector output ST2 to terminal TB2-16 if source parameter 09.13 is at default setting.

10.08 Overspeed

$0=$ motor not overspeeding
1 = motor over speed
Indicates that the speed feedback $03.02>1000$, that is, the speed is out of range, suggesting that the motor is being mechanically driven faster than the maximum speed of the Drive. This function is a monitor only, and does not initiate a trip signal.

10.09 Zero speed

0 = speed not zero
1 = zero speed
Set if speed feedback 03.02 < zero speed threshold 03.23 . Refer to 10.01 and 10.02

10.10					
Armature voltage clamp active					
RO Bit \hat{y} 0 or 1 \Rightarrow .					

0 = clamp not active
1 = clamp active
Set when the armature voltage clamp is activated.
Prevents the voltage from increasing further. Refer to 03.15.

10.11 Phase rotation

0 = L1 L3 L2
$1=\mathrm{L} 1 \mathrm{~L} 2 \mathrm{~L} 3$
Rotation is detected from L1, L2, L3.
NOTE that connection to E1 and E3 must also be correct - refer to Figs. 12 and 13.
10.12 Drive healthy (normal)

| | RO | Bit | | | |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| \hat{r} | 0 or 1 | \Rightarrow | | | |

1 = Drive is powered-up and has not tripped.

10.13 Alarm ($1 \times t$ t)

| | RO | Bit | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow
 0 | | | | | |

$0=$ no alarm condition present
1 = alarm condition present, impending sustainedoverload trip
Indicates that the Drive is in an overload condition and will eventually trip on sustained overload 10.18 if the overload condition is not removed. The time taken to trip is dependent on the settings of 05.06 and 05.07 and on the magnitude of overload. Visual indication that the alarm has been actuated is given by the Alarm LED (flashing). External signal also provided through status logic output ST3 to terminal TB2-17 provided that source parameter 09.19 is at its default value.
10.14 Field loss

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\hat{\imath}$ | 0 or 1 | \Rightarrow | | | |

$0=$ field healthy (normal)
$1=$ field failed
Indicates that no current is being drawn from the internal field supply (or the FXM5 optional external field control unit if installed).

10.15 Feedback loss

$0=$ speed feedback present 1 = speed feedback absent or polarity reversed Indicates no feedback signal, or reversed polarity. Applies equally to tachogenerator (tachometer) and encoder (pulse tach.) feedback, whichever is selected. Loss of feedback is not detected until the firing angle has advanced to the point where the value of 05.03 (firing angle) >767. This condition can be prevented from tripping the Drive by disabling feedback loss detection 10.30.

10.16 Supply or phase loss

0 = healthy (normal)
1 = supply/phase loss
Indicates loss of one or more input phases connected to L1, L2, L3. Can be disabled by means of 10.31 .

$0=$ no overcurrent peak detected
1 = overcurrent peak detected
Indicates that a current peak >2x (max. current according to the burden resistor installed) has occurred. The result is that firing pulses are immediately suppressed, shutting the Drive down.

$0=$ sustained overload not detected
1 = sustained overload detected
Indicates that current feedback 05.01 has exceeded the overload threshold 05.06 for a length of time determined by the overload time values 05.07 and 05.08 integrated with the magnitude of the overload (the conventional Ixt function). When the current exceeds the overload threshold,
the excess integrates with time causing the value of the actual overload 05.11 to increase.
Conversely, if the current falls below the threshold during integration, the value of 05.11 falls towards zero. The rate of integration is set by 05.07 when the current is > threshold, and by 05.08 when the current is < threshold. The rate of integration is the trip time with full scale overload $(05.01=1000)$. This function imitates the behavior of a thermal relay and simulates the thermal characteristic of a motor.

10.19 Processor 1 watchdog

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow | | | | | |

0 = healthy (normal)
$1=$ trip
In normal operation of the Drive the watchdog timer is reset periodically by Processor 1 as a check that the processor and Drive program are functioning normally. If a reset does not occur before the timer has timed out the conclusion is either that the processor has failed or that the Drive program has crashed. The result is immediate controlled shutdown of the Drive, accompanied by a watchdog fault trip signal.

10.20 Processor 2 watchdog

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow | | | | | |

0 = healthy (normal)
1 = trip
10.21 Motor overtemperature

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow | | | | | |

$0=$ healthy (normal)
$1=$ trip
$10.21=1$ indicates trip detected at the motor thermistor input terminal.
trip level $3 \mathrm{k} \Omega$
detector reset level $1.8 \mathrm{k} \Omega$

$0=$ healthy（normal）
1 ＝trip
$10.22=1$ indicates thyristor（SCR）stack overtemperature，$>100^{\circ} \mathrm{C}$（on Drives fitted with a thyristor（SCR）stack heatsink thermistor）．

10．23 Speed loop saturated

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\hat{\rightharpoonup}$ | 0 or 1 | \Rightarrow | | | |

0 ＝speed loop not saturated
1 ＝speed loop saturated
Indicates that the output of the speed loop algorithm，from which the current demand 04.01 is derived，is at a limit．This may be due to the application of a current limit or a zero－current clamp，and may occur if the motor is mechanically stalled．

10．24 Zero current demand

| | RO | Bit | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| \hat{y} 0 or 1 \Rightarrow | | | | | |

0 ＝current demand >0
1 ＝current demand $=0$
Indicates that the current demand signal is being limited to zero．This could occur，for example，as a result of a sudden loss of load，the Drive being in torque control mode with speed over－ride．The speed could reach the set speed threshold as a consequence，causing the speed loop to reduce the current demand to zero．

Record of the last－trip code，forming the basis of a trip history．

10．26 The trip before the last trip（10．25）

	RO	Uni			
\hat{y}	$0 \sim 255$	\Rightarrow			

Record of the trip before that which is saved in 10.25.

10．27 The trip before 10.26

	RO	Uni			
$\hat{\jmath}$ $0 \sim 255$ \Rightarrow					

Record of the trip before that which is saved in 10.26 ．

10．28 The trip before 10.27

	RO	Uni			
今 $0 \sim 255$ \Rightarrow					

Record of the trip before that which is saved in 10.27.

The four parameters 10.25 to 10.28 provide a permanent memory of the last four trips．They are updated only by a new trip occurring．

10.29					
Disable field loss trip					
RW Bit 人े 0 or 1 \Rightarrow 0					

$0=$ field loss trip enabled Prevents the Drive from tripping when field loss is detected，for example，in applications where the internal field supply is not used or is switched off when the Drive is not running．

10.30	Disable feedback loss trip				
		RW	Bit		
食	0 or 1	\Rightarrow		0	

0 ＝feedback loss enabled Prevents the Drive from tripping when speed feedback loss is detected，for example in certain load－sharing applications and in applications which do not involve motors，such as battery charging and other electrolytic processes．

10.31						
Disable supply or phase loss trip						
RW Bit $\hat{\mid} \mid$ 0 or 1 \Rightarrow 0						

$0=$ supply/phase loss enabled
Prevents the Drive from tripping when supply or supply phase loss is detected, allowing the Drive to ride through brief supply interruptions.
10.32 Disable motor overtemperature trip

1 = motor overtemperature trip disabled Prevents the Drive from tripping when motor temperature sensor input changes to high resistance, for example when motor overtemperature protection is used in the alarm mode, or to achieve a line normal stop.
10.33 Disable heatsink overtemperature trip

	RW	Bit				
$\hat{\rightharpoonup}$	0 or 1	\Rightarrow	0			

$0=$ heatsink overtemperature trip enabled Prevents the Drive from tripping when heatsink temperature sensor detects a temperature greater than $100^{\circ} \mathrm{C}$ for example when the thyristor (SCR) heatsink overtemperature protection is used in the alarm mode, or to achieve a system normal stop.

NOTE

This parameter defaulted to 1 on Drives with software before V5.
 Factory set to 1 on Drives from M25-M105.

If $10.34=1$, the Drive will trip. If an external trip is required, the user can program any logic input to control this bit (refer to Menu 08). Alternatively it can be controlled by application software or through the serial interface.
10.35 Processor 2 trip

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} | $0 \sim 255$ | \Rightarrow | 0 | | |

If the Drive is healthy (normal), the data display for 10.35 is 0 . The value of 10.35 is continuously monitored by the processor. The Drive trips immediately if a non-zero value (other than 255) appears via the serial communications interface, or Processor 2 software.
If $10.35=255$, this is the equivalent of a RESET.

When $10.36=1$ the trip which normally would follow loss of the current loop is disabled.

When set, the armature open circuit trip (AOP) is disabled.

Menu 11

Miscellaneous

User defined menu

Parameters 11.01 through to 11.10 define the parameters in the user-defined Menu 00. For example, if the user wishes parameter 00.01 to display speed in rpm (03.03), parameter 11.01 (corresponding to 00.01) should be set to 303 .

Parameters 11.09 through to 11.10 are shared and have functions associated with the MD29 PCB. Refer to the MD29 Users Guide.

11.11 Serial address

Defines the unique address of a Drive when several are connected to common serial bus in a multidrop application. If set to 100 , the value is taken as 99 .

11.12 Baud rate

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\imath}$ | 0 or 1 | \Rightarrow | 0 | | |

Two Baud rates are available for the communications interface with the standard Drives. Enter the setting number appropriate to the required Baud rate as shown:

Baud	Setting
4800	0
9600	1

A Drive reset is required before the setting takes effect.
11.13 Serial mode

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $1 \sim 4$ \Rightarrow 001 | | | | | |

Defines the mode of operation of the serial port.

There are four modes. Enter the setting number appropriate to the required mode as shown:

Mode	Setting
ANSI protocol	1
Output variable defined by 11.19	2
Input variable into parameter defined by 11.19	3
Wide integer (16-bit) driver	4

Mode 1 is for communication between the Drive and another serial device (terminal, PLC, computer).

Mode settings $\mathbf{2}$ and $\mathbf{3}$ are for rapid transfer of information between two Drives, avoiding the need for analog signals to pass between them. For example, mode settings 2 and 3 could be used in a load-sharing application to output the current demand from one Drive in Mode 2 and input a current demand to another in Mode 3.

In Mode 4 the Drive will output the wide integer 15.63 to the transmit lines, and put any received data into 15.62. This permits a digital reference to be transmitted down a line of Drives, and offers the possibility of setting ratios at each stage. Data must be transferred from 15.62 to 15.63 by an MD29 program. If a Wide Integer is read from the serial comms link (interface), the data will be sent as five ASCII characters with no sign. (The full range of parameters can be written by five ASCII characters so long as no sign is included). Data is transferred by mode 4 at the rate of $3 \times$ AC mains power frequency.

A Drive reset is required before the value takes effect.

11.14 Reserved

This parameter is reserved.

Displays the revision number of the software installed in Processor 1．For example，version 4.10 .0 is displayed as 410 （data window）．

Reserved for processor 2 special application software（MD29 option PCB）．

11.17	Level 3 security code				
		RW	Uni		
令	$0 \sim 255$	\Rightarrow		149	

If this parameter is changed（to any value other than 0 or 149）and stored，the value set must be entered into parameter 0 to return the Drive to its as－delivered state．Level 1 or Level 2 security must then be used in the normal way．If 11.17 is set $=0$ ， all parameters are freely read－write accessible without the need to enter a security code．To store， set parameter $00=1$ and press RESET．

11．18 Boot－up parameter

	RW	Uni			
介今	$0 \sim 1999$	\Rightarrow	+000		

Used for setting the parameter displayed at the keypad at power－on．

11．19 Serial programmable source

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\text { 人े}}$ $0 \sim 1999$ \Rightarrow +000 | | | | | |

Defines an output or input parameter when serial mode 2 or 3 is selected．Refer to 11．13．

11．20 Serial scaling

	RW	Uni			
$\hat{\rightharpoonup}$	$0 \sim 1999$	\Rightarrow	+1000		

Scales the input data in serial mode 3 ．Refer to 11．13．

Designations：

Bit 7	Alarm
Bit 6	Zero speed
Bit 5	Run forward
Bit 4	Run reverse
Bit 3	Bridge 1
Bit 2	Bridge 2
Bit 1	At speed
Bit 0	Current limit

The displayed value is the decimal equivalent of the bit－pattern．

Disables the normal functions of the keypad LED indicators（with the exception of Drive Ready）and renders them programmable．By setting $11.22=1$ ， normal LED functions（with the exception of Drive Ready ）can be controlled via the serial interface or processor 2 special application software．The LEDs display the binary equivalent of the value in 11.21 ．

Setting of $1=$ MDA6 High voltage (660V) If the High voltage (660V) MDA6 power board is to be used for a high voltage Mentor II, this parameter must be set $=1$.
11.24 Mains (AC power) dip ride-through

| | RW | Bit | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 人े | 0 or 1 | \Rightarrow | 0 | | |

Default 1 = Enable ride-through

NOTE

In order to maximize the mains dip ride-through capability of the Mentor II it is necessary to connect the circuit shown in Fig. 23. Software version V3.1.0, or later, must be installed. Analog input GP2 (refer to Menu 07) is set up as a mains healthy (AC power normal) input when parameter $11.24=1$. When set up in this way, if the voltage on terminal TB1-5 (GP2) falls below the $1 V$ threshold, the Drive disables firing immediately and shuts the display off to reduce power consumption. When the Drive detects that the supply has been established for 40 ms , it will reset and restart provided that the appropriate RUN and ENABLE commands are still present. The Drive will typically take 340 ms to restart after a mains dip.

External circuit for mains (AC power) dip input

Fig 23

NOTE

With software version V4.2.0 and earlier the Drive healthy relay would change state to indicate a fault if the Drive detected a mains dip.

Menu 12

Programmable Thresholds

	Threshold 1 exceeded					
		RO	Bit			
令	0 or 1	\Rightarrow				

0 = healthy (normal)
$1=$ threshold exceeded
12.06 Invert threshold 1 output

| | RW | Bit | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 今े | 0 or 1 | \Rightarrow | 0 | | |

0 = default
1 = signal inverted

Menu 13

Digital Lock

13.03 Master counter increment

13.04 Slave counter increment

13.05 Position error

Indicates the difference between the positions of the master shaft and the slave shaft.

See also 13.07, 13.12 and 13.13
13.07 Precision reference (msb)

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\imath}$ | $0 \sim 255$ | \Rightarrow | 000 | | |

See also 13.06, 13.12 and 13.13

Parameters 13.06 and 13.07 are used, in conjunction with each other, to define a 16 -bit velocity reference when parameter $13.12=0$. Parameter 13.06 is the least-significant component. Parameter 13.07 is the most-significant component.
Each unit of 13.07 represents 256 increments of 13.06.

13.08 Position loop gain

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | $0 \sim 255$ | \Rightarrow | 025 | | |

Determines the amount of velocity correction per unit of position error. The setting thus determines how quickly the loop responds to a disturbance, and thus affects the motor output shaft position.

The gain applied $=13.08$ 256
This parameter must be adjusted in conjunction with the Speed Loop PID Gains 03.09, 03.10 and 03.11 to attain the best balance between stability and quick response.
13.09 Position loop correction limit

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 1000$ \Rightarrow +010 | | | | | |

Limits the amount of the velocity-correction resulting from a position error.
13.10 Enable digital lock

	RW	Bit				
$\hat{\rightharpoonup}$	0 or 1	\Rightarrow	0			

0 = disabled
1 = enabled
Enables the Position Loop software.

13.11 Rigid lock selector
RW Bit \hat{y} 0 or 1 \Rightarrow 0

0 = disabled
1 = enabled
When $13.11=1$, the position error, relative to the time the position loop is closed, is always absolute. This means that if the slave output shaft is slowed down by an overload, position will be regained by an automatic speed increase when the load reduces to or below maximum.
When $13.11=0$ (default), the Position Loop is closed only when the At Speed condition is reached. This allows the accelerating Ramps to be used without overspeeding the slave output shaft.

13.12 Precision reference source

	RW	Bit				
\hat{y}	0 or 1	\Rightarrow	0			

1 = master encoder (pulse tach.)
0 = precision reference
Determines the source of the digital loop reference, as between the master encoder (pulse tach.) (13.01) or the precision references (13.06 and 13.07).

\subsection*{13.13 Precision reference latch
 | | RW | Bit | | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{r} | 0 or 1 | \Rightarrow | 0 | | | |}

$0=$ use last values
1 = use updated values
The two Precision Reference values, 13.06 and 13.07 , cannot be changed simultaneously. To prevent the Position Loop reading inconsistent values during the change, parameter $13.13=0$ (default) enables the Position Loop to continue to use the last values while the change is taking place. When a change of both 13.06 and 13.07 has been completed, setting 13.13 $=0$ causes the updated values to be applied. 13.13 should then be reset to 0 , ready for the next update.
13.14 Precision speed reference (16-bit)

	RW	Uni			
$\hat{\jmath}$ $000 \sim 65535$ \Rightarrow 0					

This parameter is a wide integer equivalent to the Precision Reference 13.06 and 13.07, and allows the precision reference to be written as a single statement, removing the need for the latch, parameter 13.13.
Parameter 13.14 is intended primarily for use through serial communications.

Menu 14

MD29 system set-up

NOTE

The set-up parameters take effect only after the MD29 or Drive has been reset, or when a RENIT instruction in a DPL program has been executed.

14.01	ANSI serial address				
		RW	Int		
合	0~99	\Rightarrow		1	

This parameter defines the addresses for serial communications.

14.02 RS485 mode

This parameter sets the Mode for serial communications.
All modes except Modes 7 and 8 are fixed in the format:
1 start bit, 7 data bits, even parity, 1 stop bit.

14.03 RS485 Baud rate (Mode 1,5,6 and 7)

This parameter sets the Baud rate:
$24=2400,48=4800$, etc.

14.04 Clock task timebase (ms)

Defines the clock-tick time in milliseconds for executing the CLOCK Task of a DPL program. Maximum: 100 ms .

14.05 CTNet Node address

	RW	Int				
$\hat{\rightharpoonup}$	$0 \sim 255$	\Rightarrow	0			

Specifies the CTNet Node address.
Available with MD29AN only.

14.06 Auto-run mode

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\imath}$ | 0 or 1 | \Rightarrow | 1 | | |

When set at 1, this parameter enables a DPL program to be automatically started when when the MD29 is reset or powered-up.
When set at zero, a command must be issued from the MD29 Toolkit software before the DPL program will start.
14.07 Global run time trip enable

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | 0 or 1 | \Rightarrow | 1 | | |

When set at 1, this parameter causes the MD29 to trip and stop if a Task over-runs.
There is no controlled stop.
The display will show A29.
14.08 I/O link trip enable

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \hat{y} | 0 or 1 | \Rightarrow | 0 | | |

When set at 1, this parameter causes the MD29 to trip if there is a communication link failure between the MD29 and the CT I/O box.
14.09 Enable watchdog (WDOG)

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ | 0 or 1 | \Rightarrow | 0 | | |

When this parameter is set at 1 , the Drive will trip if a fault occurs in the MD29 hardware or software. A user's DPL program cannot cause this trip.

14.10	Trip if a parameter write over-ranges					
RW Bit						
\hat{y}	0 or 1	\Rightarrow	1			

Each Drive parameter has a finite range of values which can be accepted. Any value which is outside the parameter limits could signify a program failure. When this parameter is set at 1 , the Drive will trip if a parameter is outside the limits. When it is set at 0 , the MD29 places a limit-on the value written.

	14.11	Disable monitor port protocol					
			RW	Bit			
人		0 or 1	\Rightarrow		0		

Setting this parameter at 1 puts the RS232 serial port into plain ASCII mode, and disables all the communications protocols for debugging and using the MD29 Toolkit.

When this parameter is set at 1 , the MD29 indicates if the Clock Task over-runs.
14.13 I/O link synchronisation source

| | RW | Bit | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} 0 or 1 \Rightarrow 0 | | | | | |

When this parameter is set at 1 , the MD29 indicates if the Encoder Task over-runs.

This parameter sets the timebase for the ENCODER Task.
$0=5 \mathrm{~ms}$
$1=2.5 \mathrm{~ms}$

14.15 Reserved

| | RW | Bit | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\hat{\rightharpoonup}$ 0 or 1 \Rightarrow 0 | | | | | |

14.16 Flash store request

Set to 1 to save the PLC parameter registers (.PX\% and -QX\%) into the non volatile memory of the MD29. The parameter value automatically returns to 0 .
See MD29 User Guide for more details.

14.17 RS232 Drive - Drive comms enable

When set to 1 , and the DPL Toolkit communications are disabled, Drive to Drive RS232 communications are enabled. See MD29 User Guide for more details.

Menus 15 and 16

Applications Menus

These menus are free for use by any application program within a MD29．

$\underset{\sim}{15.01}$	RO variable 1 ～ 5				
		RO	Bi		
令	± 1999 吅				
15.06 15.10	Real RW variable 1 ～ 5				
		RW	Bi		
今	± 1999	\Rightarrow	$+000$		

| | RW | Uni | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 255$ \Rightarrow 000 | | | | | |

$\begin{gathered} 15.37 \\ 15.59 \end{gathered}$	Integer RW（not saved in NVRAM）				
		RW	Bit		
令	0 or 1	\Rightarrow		0	

Special Parameters in Menu 15

This parameter is the equivalent of parameters 15.16 and 15.17 , such that Ratio 1 in the Digital Lock software can be written simultaneously, removing the need for the latch, 15.31.
15.61 Ratio 2 wide integer

| | RW | Uni | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \hat{y} $0 \sim 255$ \Rightarrow 000 | | | | | |

This parameter is the equivalent of parameters 15.18 and 15.19 , such that Ratio 2 in the Digital Lock software can be written simultaneously, removing the need for the latch, 15.31 .

When serial (interface) Mode 4 is selected, this parameter is loaded with a variable input from the serial (interface) port.
Refer also to parameter 11.13.

15.63 Serial Mode 4 output data

When serial (interface) Mode 4 is selected, this parameter is transmitted to the next Drive down the line.

Special Parameters in Menu 16
16.62 CTNet diagnostic parameter

This parameter indicates the state of the CTNet network.

A value greater than 0 indicates a healthy network, with the value representing the number of messages per second received by the node.

A value of 0 indicates a healthy network, but no data is being transmitted. This usually indicates that there is no node configured to generate cyclic synchronisation messages.

A value of -1 indicates an unhealthy network caused by cabling error, no termination resistors, no other nodes on network, etc.

A value of -2 indicates initialisation failure, such as baud rate mismatch or illegal address. Often this will be accompanied with a trip on power-up.
16.63 DPL line number where trip occurred

This parameter is only used when the DPL program has been compiled with the debugging information switched on. The value it gives indicates the approximate line number within the DPL program where a run-time error occurred. If no run-time error has occurred, the value will be meaningless.

9 Diagnostic Procedures

Trip codes

If the Drive trips, the index display shows triP, and the data message will flash. The data display shows a mnemonic to indicate the reason for the trip.

The last four trip codes are stored in parameters 10.25 through to 10.28 , and are available for interrogation unaffected by power down/up cycles. The data stored in these parameters is updated only by the next trip event.

Mnem.	Code	Reason for the trip	
AOC	121	Armature overcurrent	An instantaneous protection trip has been activated due to excess current in the armature circuit
AOP	126	Armature open circuit	Drive has detected that the firing angle has advanced but no current feedback has been detected
cL	104	Current (control) loop open circuit	If the input reference is either 4-20mA or 20-4mA, this trip indicates that input current is <3.0mA
EEF	132	EEprom failure	Indicates that an error has been detected in the parameter set read from the EEprom at power-up
EPS	103	External power supply	Overcurrent trip at the 24V supply output terminal (TB4-33) has operated, indicating an overload in the external circuit connected to this supply. Maximum current available is 200mA
Et	102	External trip	Parameter 10.34 = 1. The external trip set up by the user has operated
FbL	119	Feedback loss	No signal from tachogenerator (tachometer) or encoder (pulse tachometer)
Fbr	109	Feedback reversal	The polarity of the feedback tacho or encoder polarity is incorrect
FdL	118	Field loss	No current in field supply circuit
FdO	108	Field on	The user has initiated self-tuning (05.09) and field current has been detected
FOC	106	Field overcurrent	Excess current detected in field current feedback. If current feedback is present and firing angle is phased back, then trip
hF	100	Hardware fault	A hardware fault has been detected during the self-diagnosis routine performed after power-up. Users are recommended to consult the supplier of the Drive
It	122	Ix t trip	The integrating overload protection has reached trip level
Oh	107	Overheat	Thyristor (SCR) heatsink overtemperature. Only on Drives equipped with heatsink thermistors (thermal switches)

Mnem.	Code	Reason for the trip	
Pc1	124	Processor 1 watchdog	Indicates a fault in the MDA1 hardware has been detected by malfunctioning of Processor 1 software
Pc2	131	Processor 2 watchdog	Indicates a Processor 2 malfunction, or a software bug (MD29 option)
PhS	101	Phase sequence	Connections to E1 and E3 are not the same phases as are connected to L1 and L3. Investigate and correct
PS	125	Power supply	One or more of the internal power supplies is out of tolerance
ScL	105	Serial communications link (interface) loss	(Only in serial comms mode 3) No input data detected
SL	120	Supply loss.	One or more of the power (input) supply phases is open- circuit
th	123	Thermistor (thermal switch)	Motor protection thermistor (thermal switch) has initiated a trip indicating windings overheating. Trip threshold 3k $\Omega+5 \%$. Reset 1.8k Ω
A29	$40-69$	Indicates an MD29 fault	Refer to the MD29 Users Guide

NOTE

In the event of any trip, all RO parameter values are frozen and remain so for interrogation while the cause of the fault is investigated. To enter parameter adjustment mode from the trip mode, press any of the five adjustment keys. To reenter trip mode, go to Menu 00 and press LEFT key.

NOTE

If the trip persists, contact your supplier. Attempts to repair the Drive may invalidate the warranty.

Trip codes in numerical order

A29	$40-69$	MD29 fault
hF	100	Hardware fault
PhS	101	Phase sequence
Et	102	External trip
EPS	103	External power supply
cL	104	Current (control) loop open circuit
ScL	105	Serial communications link (interface) loss
FOC	106	Field overcurrent
Oh	107	Overheat
FdO	108	Field on
Fbr	109	Feedback reversal
FdL	118	Field loss
FbL	119	Feedback loss
SL	120	Supply loss
AOC	121	Armature overcurrent
It	122	I x t trip
th	123	Thermistor (thermal switch)
Pc1	124	Processor 1 watchdog
PS	125	Power supply
AOP	126	Armature open circuit
Pc2	131	Processor 2 watchdog
EEF	132	EEprom failure.

10 Serial Communications

The control circuits are isolated from the power circuits in the Drive by basic insulation only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

A communications interface is standard in all Mentor II Drives. It is a machine-machine interface, enabling one or more Drives to be used in systems controlled by a host such as a process logic controller (PLC) or computer.

Mentor II Drives can be directly controlled, their operating configuration can be altered, and their status can be interrogated by such a host, and continuously monitored by data logging equipment.

The communication port of the Drive unit is the connector PL2 (Fig.14). The standard connection is the RS422. Protocol is ANSI x 3.28-2.5-A4, as standard for industrial interfaces.

Connections

The serial communications interface is made available on the 9-Way D-Type connector labelled PL2 on the MDA2B card. This connector provides standard RS422 interfacing.

Fig 24

The Mentor Drive is equivalent to two-unit loads, therefore up to 15 Drives may be connected to a host controller before the use of repeaters is necessary. When repeaters are used, up to 99 Drives may be connected.

NOTE

RS422 is practically the same as RS485, the main difference being RS485 allows more than one master controller.

CAUTION

An RS232 connection may be made to the RS422 port, but is not recommended for any purpose other than commissioning due to its inferior specification (low noise rejection, limited cable length, etc). Note that RS232 is not the same as 2-wire RS422/485.

Connecting to the Drive

485 serial communications port
MentorSoft connects to the RS485 Mentor II port by using either a standard 4-wire RS232 to RS485 converter, or by fabricating the following lead:

PC 25-way	PC 9-way	PL2 9-way
3	2	2
2	3	3
7	5	$1+6+7$ (link all three terminals)

If you have problems...
Cannot go on-line:
Check connections to Drive.
Perform an auto-baud detection.
Make sure that the correct "COM" port is selected.

Ensure that the Mentor II is in 4-wire ANSI mode (11.13 = 1).

The components of all messages between the host and a Mentor II Drive are formed of ASCII characters. The format of a message, i.e. the sequence in which the characters appear, is standardized for messages of each different kind, and is explained under Structure of Messages, below.

Preliminary Adjustments to the Drive

Each Drive requires a unique identity number, or serial address, set by parameter 11.11. The Baud rate 11.12 is required to be set to match the host. Data, Drive status and the parameter set-up can be read from the Drive in any mode, provided only that the Drive is powered up, and that the serial address and Baud rate are correctly set.

The following tables gives the terminal designations for the connector PL2 for both RS422 and RS232 communications links

Pin no.	RS232	RS422
1	NC	0 V
2	TXD	$\overline{\text { TXD }}$
3	RXD	$\overline{\mathrm{RXD}}$
4		
5	0 V	TXD
6	0 V	RXD
7		
9		

Routing the serial communications cable

A data communications cable should not run parallel to any power cables, especially ones that connect Drives to motors. If parallel runs are unavoidable, ensure a minimum spacing of 300 mm (1 foot) between the communications cable and the power cable.
Cables crossing one another at right-angles are unlikely to give trouble.
The maximum cable length of a RS422 link is approximately 1,000 meters (4,000 feet)

Termination

When a multi-drop RS422 network is used, it is necessary to connect a 120Ω resistor between the two receive lines of the last unit on the bus (i.e. the unit farthest away from the host). Care must be taken to ensure that other units in the network do not have the resistor already fitted - excessive signal loss will occur otherwise. The termination resistor can be fitted between the two posts labelled R 6 to the right of the 9 -way D-Type connector.

Components of messages

Control Characters

To conform to the standard structure of a message, the stages of a message are signalled by control characters. Each character has a specific meaning, a standard abbreviation, and is transmitted and received in ASCII code. If a message is initiated from a keyboard, the control characters are keyed by holding the Control key down while making a single-letter keystroke. Of the 32 control characters in the ASCII set, the seven in the following table are used in Mentor II serial communications.

Control characters in Mentor II Drives

Character	Meaning	ASCII code HEX	Keyed as Control..
EOT	Reset, or "Now hear this", or End of Transmission	04	D
ENQ	Enquiry, interrogating the Drive	05	E
STX	Start of text	02	B
ETX	End of text	03	C
ACK	Acknowledge (message accepted)	06	F
BS	Backspace (go to previous parameter)	08	H
NAK	Negative acknowledge (message not understood)	15	U

Serial Address

Each Drive is given an identity or address (parameter 11.11) so that only the Drive that is concerned will respond. For security, the format is that each digit of the two-digit Drive address is repeated, thus the address of Drive number 23 is sent as four characters:

2333

The serial address follows immediately after the first control character of the message.

Parameter Identification

For transmission by serial link (interface), parameters are identified by the four digits representing the menu and the parameter number, but without the decimal point, which is used in the text of this Guide for clarity. For example, to send menu 04, parameter 26, write 0426 .

Data Field

Data to be sent or requested occupies the next five characters after the parameter number. All of the operating parameters of the Drive are numerical values, such as load, current, etc. The field for data is variable in length up to five characters maximum (but see reference to increased resolution on the previous page). No decimal point is used.

The state of bit-parameters is transmitted and received as real-value data, of value 0 or 1 . Again, the format is flexible so long as no more than five characters are comprised, for example:

0	1
- and so on.	1

Block Checksum (BCC)

To permit the Drive and the host to ensure that messages from one to the other have not become corrupted in transmission, all commands and data responses must be terminated by a block checksum character (BCC, next section).

Structure of messages

Host to Drive

Messages from the host to the Drive are of two kinds:
a request for information, or a command.

Both kinds must start with the control character EOT (Control-D) to initiate the Drive to receive a new message. This is followed by the serial address of the Drive receiving the message. The format of the data and the choice of control character to terminate the message is different for the two kinds.

For an information request, sending the parameter number followed by ENQ instructs the particular Drive addressed to supply data relating to that parameter.

For a command, a control character after the serial address tells the Drive that the message is to be an instruction concerning its operational parameters, and that the next part of the message will be a parameter number and the instruction data. The instruction data occupies five to nine characters, or ten for high resolution. An instruction message is terminated by control character ETX followed by a block checksum (BCC, next section).

Drive to Host

Messages from the Drive to the host are of two kinds:
a reply to a data request, or acknowledgement of a message.

In reply to a data request, the start control character is STX, and is followed by the parameter number to confirm the request from the host, and then the five characters of data. The message is terminated by the control character ETX and a block checksum (BCC).

A message is acknowledged by the control character ACK if understood, or NAK if invalid, wrongly formatted or corrupt.

Multiple Drives

A message can be sent to two or more addresses simultaneously. If all Drives are to respond to the same request or instruction, the message is transmitted to address 0 (zero).

Wide Integers - Serial Mode 4

Resolution

Some parameters can be set to a higher resolution than that displayed or read by the serial interface. These are the real parameters with a range of 1000.

If the user wishes to set variable to a higher resolution, six digits must be written in the data field. Mentor II then recognizes the request for higher resolution. For example, to set the speed demand to 47.65% of maximum speed, transmit:

$$
+04765
$$

The wide integer (16 -bit) parameters are 13.14 , $15.60,15.61,15.62$ and 15.63 . If a wide integer is sent through the comms link (interface), the data is formatted as five ASCII characters, without a "sign" in the data field. All parameters can be written via the serial interface by means of five ASCII characters if no sign is included. Refer to parameter 11.13, Chapter 6 or 7 , for further information.

Sending Data

Host command:

$$
\begin{aligned}
& \text { reset - } \\
& \text { address - } \\
& \text { start of text - } \\
& \text { menu and parameter - } \\
& 1 \text { to } 5 \text { data characters - } \\
& \text { end - } \\
& \text { BCC }
\end{aligned}
$$

For example, the message to the Drive:
"change speed reference 1 of Drive number 14 to 47.6% in reverse"
would be sent as:

CONTROL	ADDRESS				$\begin{array}{\|c\|} \hline \text { CONTROL } \\ \hline \text { STX } \end{array}$	PARAM				DATA					CONTROL	BCC
EOT	1	1	4	4		0	1	1	7	-	0	4	7	6	ETX	,
Control -D					Control -B										Control -C	

The Drive will respond with an acknowledgement, either:

ACK if the message is understood and implemented,
or
NAK if the message is invalid, the data is too long, or the BCC is incorrect.

If a value sent is outside the limits for a parameter, the Drive will respond with NAK.

Reading data

The Drive will send any data to the host, provided that the request is valid. The format of a data request message is:

Host request:

> reset - address parameter end

For example, to find the speed set point 01.17 of Drive number 12, send:

CONTROL	ADDRESS				PARAM				CONTROL
EOT	1	1	2	2	0	1	1	7	ENQ
Control -D									

The Drive replies in the following form:
start -
parameter -
5 characters of data -
end -
BCC

CONTROL	PARAM				DATA					CONTROL	BCC
STX	0	1	1	7	-	0	4	7	6	ETX	,
Control -B											

The reply first confirms that the data sent is the speed reference 1 (01.17); the five characters immediately following give the present setting as a percentage of full speed. The first character is either + or -, to indicate direction of rotation; the remainder is the numerical value. The message reads, reverse at 47.6% of full speed in this example.

Repeat Enquiry

The negative acknowledgement NAK (Control-U) can be used at a keyboard to cause the Drive to send data repeatedly for the same parameter. It saves time when monitoring the value of a parameter over a period of time.

Next Parameter

To obtain data from the same Drive for the next parameter in numerical order, send the positive acknowledgement ACK (Control-F). The Drive will respond by transmitting the data relating to the next parameter in sequence.

Previous Parameter

To obtain data from the same Drive for the previous parameter in numerical order, send backspace BS (Control-H).

Invalid Parameter Number

If the host sends a parameter number which the Drive does not recognize, e.g. 1723, the Drive will respond with EOT.

Block checksum (BCC)

To ensure that data received can be verified, a block checksum is attached to the end of each command or data response. The BCC is automatically calculated by the sending logic and is derived in the following manner.

First, a binary exclusive-OR is performed on all characters of the message after the start-of-text command parameter.

For example, if the message to be sent to Drive number 14 is:
"set speed reference 1 to 47.6% of full speed in reverse"

It is sent as:

Reset	EOT (Control-D)
Serial address	1144
Start of text	STX (Control-B)
	Not included in BCC calculation
	BCC calculation starts here
Parameter	0117 (Menu no. and parameter no.)
Reverse	$-\quad$ (a minus sign)
476	0476
End of message	ETX (Control-C)
finally,	BCC, calculated as shown

Each of the separate digits
0117 - 0476 and Control-C is represented by a hexadecimal character and calculated in binary as shown in the table. The XOR is shown progressively for each character.

Character	ASCII Character		XOR		
menu	0	011	0000		
	1	011	0001	000	0001
parameter	1	011	0001	011	0000
	7	011	0111	000	0111
- (minus)		010	1101	010	1010
0		011	0000	001	1010
4		011	0100	010	1110
7		011	0111	001	1001
6		011	0110	010	1111
ETX		000	0011	010	1100

The final XOR, underlined, is the BCC provided that its equivalent decimal value exceeds 31.

As the ASCII characters from hex 00 to 1 F are used only for control codes, the BCC has to exceed the value of 31 decimal. Whenever the XOR produces a (decimal equivalent) number less than 32,32 is added. Thus, in the previous XOR example,
$0101100=44$ decimal, so that the BCC is the character 44
for which the ASCII character is =,

Thus the complete message to set the speed of Drive number 14 , say, to 47.6% in reverse is as shown in the example message at the top of the previous page.

Using Mentor on a network with other CT Drives

Unlike some other Control Techniques products such as the Unidrive or the MD29 card, the Mentor does not support the Group Addressing feature. It is important therefore that when a Mentor is on the same network as Drives that do support group addressing, the Drive address defined in parameter 11.11 must not have a zero in it - in other words, choose an address of 11 or greater, and exclude the numbers $20,30,40$ etc. This will ensure that messages sent to the Mentor are not accidentally recognised by other Drives as being group commands.

Global Addressing

The Mentor II Drive also supports the use of Global Addressing. This is where a message can be broadcast to all Drives on the network - to use this, the controller will send its message to address 00 . Note that when global addressing is used, the Drives will not respond to any command messages.

This page is intentionally blank

11 Option Cards

The following option cards are available for the Mentor II Drive:

11.1 MD29

Programmable applications board that offers user programmability via a basic-like language known as DPL (Drive Programming Language), using a Windows ${ }^{\text {TM }}$ based Toolkit. To implement distributed control systems and "Soft Logic Control" to IEC61131-3, use the SYPT (SYstem Programming Tool) Workbench. This supports programming in ladder and function blocks, as well as DPL. This allows the user to highly customise the Drive by implementation of additional control loops or functions.

The MD29 offers as standard a single-axis position controller, an RS485 port that offers additional modes such as ANSI master, Modbus-RTU and Modbus-ASCII. The following software options are also available:

Single-Axis Position Controller

(built-in as standard)
Offers slave positioning or speed control using linear or S-ramp control for the velocity profile; digital lock with rigid and non-rigid modes with a slave ratio of 8-decimal places accuracy; incremental cam table providing automatic control of the slave position, relative to the master position; PID control loop.

S-Ramp

S-Ramp is designed for stepless acceleration. It achieves fast, smooth transitions to and from acceleration and deceleration ramps.

PID
PID is an extra control loop for addition to the Mentor II Drive. Proportional, integral and derivative terms can be selected to act upon an error between a reference and its feedback signal such as a dancer arm. Each term is variable to allow the package to be adapted to any application.

Centre-Wind

Centre-Wind allows Mentor II to be tuned to the characteristics of both machine and process in coiling and uncoiling applications.

Spindle Orientation

This is a control loop to hold the motor shaft in a selected, fixed position for automatic tool changing on computercontrolled machine tools.

Digital Speed \& Position Loop

Provides precise control of speed, and the ability to synchronise two shafts.

11.2 CTNet (MD29AN)

This card offers all the features of MD29, but with the addition of the CTNet distributed control network. CTNet is a high performance network running at $5 \mathrm{Mbits} / \mathrm{sec}$. It requires no master controller, and it offers full, easy to configure cyclic data transfer and non-cyclic peer-peer data transfer of Drive parameters and any other data.

11.3 Interbus-S (MDIBS)

Dedicated Interbus-S communications bus interface. The MDIBS card does not offer MD29 programmability.

11.4 Profibus-DP(MD24)

Dedicated Profibus-DP communications bus interface with a maximum speed of $1.5 \mathrm{Mbits} / \mathrm{sec}$. The MD24 card does not offer MD29 programmability.

11.5 DeviceNet (MD25)

Dedicated DeviceNet interface. The MD25 card does not offer MD29 programmability.

11.6 IO Box

Remote unit that can be connected to the MD29 card via a RS485 link. The I/O Box offers 8 digital inputs, 8 digital outputs, 5 analogue inputs and 3 analogue outputs. An additional 24 TTL digital I/O ports are also available for connection of thumbwheel switches, etc.

Additional hardware and software for the

 Mentor II range of DC Drives1 FXM5 Field Control Module
2 Software

11.7 Field Control Unit FXM5

Summary

The FXM5 unit enables a Mentor II Drive to operate a motor with a variable motor field under digital control. Parameters in Menu 06 (Field Control) are provided as standard for use in conjunction with the FXM5 controller. Parameter 06.11 scales the current, as shown in the table on the next page.

It is essential that links (jumpers) LK1 and LK2 on the Power Board MDA75, MDA75R, MDA210, MDA210R or link LK1 on the MDA6 are cut before using the Drive with FXM5 Field Control.

The FXM5 is suitable for motors with field current up to 20 amps , and is installed externally to the Drive unit. It is suitable for retrofitting by the user on site if desired.

FXM5 unit. Overall and mounting dimensions

DIMENSIONS

	$m m$	in
A	112.5	$4^{7 / 1 / 6}$
B	250	$9^{7 /} / 8$
C	176	$6^{15} /{ }^{76}$
D	162	$6^{3 / 8}$
E	150	$5^{15} /{ }_{16}$
F	112	$4^{7 / 16}$
G	225	$8^{7 / 8}$

Fig 25

FXM5 Start-up Data

The maximum field current delivered by the FXM5 is determined by the number of primary turns of the DCCT (specified for and supplied with the FXM5 unit), and by the setting of link (jumper) LK1 on the FXM5.

LK1 can be placed in one of two positions, such that:

$$
\text { Maximum } I_{F}=\frac{20}{\mathrm{~Np}} \text { or } \frac{15}{\mathrm{~Np}}
$$

where $N p$ is the number of DCCT primary turns.
In conjunction with the setting of parameter 06.11, the resulting field current can be adjusted to one of 20 different values from 1A to 20A in one-ampere steps. (See 06.11 Field Current Feedback Scaling)

Protective Fuses

Note that the field output circuit is protected by 10A fuses as standard (FS3 and FS4). If a field current in excess of 9 A is required the fuses must be replaced by HRC fuses of appropriate rating.

Maximum Field Current, Digital Control Mentor II Software version V4.3.0 onwards.

NOTE

Issue (rev) 2 FXM5 must not be used with earlier versions of Mentor II software.

Maximum	Primary	LK1 position		Parameter
current	turns	$\mathbf{2 0}$	$\mathbf{1 5}$	$\mathbf{0 6 . 1 1}$
A	Np	Np	Np	setting
1	10		X	1
2	10	X		2
3	5		X	3
4	5	X		4
5	4	X		5
6	3	X		6
7	2	X		7
8	2	X		8
9	2	X		9
10	2	X		10
11	1		X	11
12	1		X	12
13	1		X	13
14	1		X	14
15	1		X	15
16	1	X		16
17	1	X		17
18	1	X		18
19	1	X		19
20	1	X		20

NOTE

The Field Controller will weaken the field even though the armature voltage clamp may be active.

This page is intentionally blank

12 Electromagnetic Compatibility

General note on EMC data

The information given in this User Guide is derived from tests and calculations on sample products. It is provided to assist in the correct application of the product, and is believed to correctly reflect the behaviour of the product when operated in accordance with the instructions. The provision of this data does not form part of any contract or undertaking. Where a statement of conformity is made with a specific standard, the company takes all reasonable measures to ensure that its products are in conformance. Where specific values are given these are subject to normal engineering variations between samples of the same product. They may also be affected by the operating environment and details of the installation arrangement.

Immunity

Provided that the instructions in this User Guide are correctly implemented, Mentor II Drives exhibit excellent immunity to interference from sources outside the Drive unit.

For more detailed information, refer to the Mentor II EMC datasheet.

The Drive complies with the following international and European harmonised standards for immunity.

The immunity is achieved without any additional measures such as filters or suppressors. To ensure correct operation the wiring guidelines specified in the product manual must be carefully adhered to.

All inductive components such as relays, contactors, electromagnetic brakes, etc., associated with the Drive, must be fitted with appropriate suppression, otherwise the immunity of the Drive may be exceeded.

Standard	Type of immunity	Test specification	Application	Level
EN 61000-4-2*	Electrostatic discharge	6 kV contact discharge 8 kV air discharge	Module enclosure	Level 3 (industrial)
IEC 801-3	Radio frequency radiated field	$10 \mathrm{~V} / \mathrm{m}$ prior to modulation 27-1000MHz 80% AM (1 kHz) modulation (reduce to $3 \mathrm{~V} / \mathrm{m}$ for $87-108 \mathrm{MHz}$)	Module enclosure	Level 3 (industrial)
ENV 50140*	Radio frequency radiated field	$10 \mathrm{~V} / \mathrm{m}$ prior to modulation 80-1000MHz 80% AM (1 kHz) modulation (reduce to $3 \mathrm{~V} / \mathrm{m}$ for $87-108 \mathrm{MHz}$)	Module enclosure	Level 3 (industrial)
ENV 50141*	Conducted radio frequency	10 V prior to modulation $0.15-80 \mathrm{MHz}$ 80\% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)
EN 61000-4-4*	Fast transient burst	$5 / 50 \mathrm{~ns} 2 \mathrm{kV}$ transient at 5 kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
		$5 / 50 \mathrm{~ns} 2 \mathrm{kV}$ transient at 5 kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
EN50082-1	Generic immunity standard for the residential, commercial and light - industrial environment			Complies
EN50082-2	Generic immunity standard for the industrial environment Calls up basic standards marked *			Complies
$\begin{aligned} & \text { EN61800-3 } \\ & \text { IEC61800-3 } \end{aligned}$	Product standard for adjustable speed power Drive systems (immunity requirements)		Meets immunity requirements for first and second environment	

Emission

For installation in the "second environment", ie, where the low voltage supply network does not supply domestic premises, no filter is required in order to meet IEC61800-3 (EN61800-3).

$|$| Operation without a filter is a practical |
| :--- |
| cost-effective possibility in an |
| industrial installation where existing |
| levels of electrical noise are likely to |
| be high, and any electronic equipment |
| in operation has been designed for |
| such an environment. There is some |
| risk of disturbance to other equipment, |
| and in this case the user and supplier |
| of the Drive system must jointly take |
| responsibility for correcting any |
| problem which occurs. |

Fig. 26 shows wiring guidelines to achieve minimum emission in a typical installation. When used with the recommended filter the Drive will meet the conducted emission limits required by the generic emission standard EN50081-2.

Motor cable length should not exceed 300 m to ensure that the industrial limit is met with adequate margin.

The limits for conducted emissions required by the generic standards are summarized in the following table:

Standard	Description	Frequency range	Limits	Application
EN50081-2	Generic emission standard for the industrial environment	$0.15-0.5 \mathrm{MHz}$	$79 \mathrm{~dB} \mu \mathrm{~V}$ quasi peak $66 \mathrm{~dB} \mu \mathrm{~V}$ average	
		0.5-5MHz	$73 \mathrm{~dB} \mu \mathrm{~V}$ quasi peak $60 \mathrm{~dB} \mu \mathrm{~V}$ average	
		$5-30 \mathrm{MHz}$	$73 \mathrm{~dB} \mu \mathrm{~V}$ quasi peak $60 \mathrm{~dB} \mu \mathrm{~V}$ average	

Recommended filters

Two methods are shown in Fig. 26 for suppressing the conducted emission into the power supply line for the main thyristor converter.

Method 1

A low cost technique using high value capacitors between power lines and earth which makes use of the suppression provided by the standard line reactors. Component values are given in the following table:

Drive	Line reactors La, Lb, Lc $(\mu \mathrm{H})$	Line to earth capacitors $\mathrm{Ca}, \mathrm{Cb}, \mathrm{Cc}$ ($\mu \mathrm{F}$)	$\begin{gathered} \text { Discharge } \\ \text { resistors } \\ \text { Ra, Rb, Rc (k } \Omega) \end{gathered}$	Discharge resistor power rating (W)
M25, M25R	200	4.7	470	0.5
M45, M45R	200	4.7	470	0.5
M75, M75R	100	10	220	0.5
M105, M105R	100	10	220	0.5
M155, M155R	75	13	150	1
M210, M210R	75	13	150	1
M350, M350R	35	29	68	3
M420, M420R	27	37	56	3
M550, M550R	25	40	56	3
M700, M700R	23	44	47	3
M825, M825R	19	53	39	4
M900, M900R	17	59	33	4
M1200, M1200R	13	77	27	6
M1850, M1850R	8.6	116	18	9

The capacitors must be wired in as close as possible approximation to a 'Kelvin' connection, minimising the length of the wiring between the capacitors and the power circuit.

An assembly of low-inductance capacitors, designed for direct mounting to a bus-bar, is available from Steatite Ltd with the part number CON9020250. The capacitance value in this box is $10 \mu \mathrm{~F}$ per phase. A number of these assemblies can be used together to give the required capacitance. Because of their low inductance, the next higher multiple of $10 \mu \mathrm{~F}$ above the required value can be used.

The total capacitance line to earth must be within $+/-10 \%$ of the value given in the table. If lower value line reactors are used then the capacitors must be increased in proportion. It is important that the capacitors are rated at 440 V AC and are suitable for connection to normal industrial supplies. They should also be designed to have a low series inductance.

Suitably rated resistors should be used to discharge the capacitors when the supply is disconnected from the installation. The resistors given in the table are calculated to discharge the network to less than 60 V within 5 s , based on a 440 V supply.

The capacitor network will cause a high leakage current to flow to earth. The leakage current may be calculated using the following expression, assuming the three phase supply is balanced with respect to earth and line to line:

$$
I_{E}=V \times 2 \pi \times f \times \mathbf{C} \times \mathbf{a}
$$

where \mathbf{V} is line to earth voltage, \mathbf{f} is supply frequency, \mathbf{C} is line to earth capacitance and \mathbf{a} is capacitor tolerance.

Example: M210 Drive operating on a 400 V 50 Hz supply

Use $10 \mu \mathrm{~F}+4.7 \mu \mathrm{~F}$ in parallel $=14.7 \mu \mathrm{~F}$ between each line and earth ($13 \mu \mathrm{~F}$ is required). Select capacitor tolerance to be 10%.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{E}} & =400 \times 2 \pi \times 50 \times 14.7 \times 10^{-6} \times 0.1 \\
& =185 \mathrm{~mA}
\end{aligned}
$$

In the event of a phase loss the leakage current will be higher. It can be calculated from the following expression:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{EPL}} & =\mathrm{V}_{\mathrm{LE}} \times 2 \pi \times \mathrm{f} \times \mathrm{C} \\
& =(400 / \sqrt{ } 3) \times 2 \pi \times 50 \times 14.7 \times 10^{-6} \\
& =1.07 \mathrm{~A}
\end{aligned}
$$

The capacitors cause a high earth leakage current. A permanent fixed earth connection must be provided, and subjected to regular testing.

If high earth leakage currents are unacceptable then an RFI filter must be used instead of capacitors. The filter uses lower values of capacitance, achieving the necessary attenuation by inductance.

Method 2

RFI filter with low leakage current to earth

Recommended filters are shown in the following tables:

* 690 V version also available - add the code HV after 3359 in the part number.

Recommended filter for the field regulator

There are several possibilities depending on the main suppression and how the Drive is connected to the system.

1) Using method 1 for the main circuit, if the capacitor network remains in circuit at all times when the field regulator is energised, then some low cost radio frequency chokes ($\mathrm{L}_{\mathrm{F} 1}$ and $\mathrm{L}_{\mathrm{F} 2}$) can be used - refer to Fig. 26.
2) Using methods 1 or 2 , if the field regulator is operated when the main suppression is not connected (not illustrated in Fig. 26), then a separate RFI filter is required. The filter can be used as an alternative to RF chokes even if the main filter remains in circuit at all times.

NOTE

Mentor Drives rated above 210A are normally supplied with a bridge rectifier to provide a fixed field. The field supply will still require filtering using either RF chokes or separate filter listed in the table. The FXM5 external field controller, rated at 20A, may be filtered in a similar way using the appropriate rated components. Refer to the Mentor II EMC datasheet.

Radiated emissions

When installed in a standard steel enclosure according to EMC Installation Guidelines, Fig. 26, the Drive will meet the radiated emission limits required by the generic industrial emission standard EN50081-2.

NOTE

Compliance was achieved in tests using representative enclosures and following the guidelines given. Every effort was made to ensure that the arrangements were robust enough to be effective despite the normal variations which will occur in practical installations. However no warranty is given that installations built according to these guidelines will necessarily meet the same emission limits.

Enclosure construction

For most installations, the Mentor Drive will be mounted in a protective metal enclosure which may have an internal back-plate for mounting VSD modules, RFI filters and ancillary equipment. There may be a requirement to shield the motor cable; if this is the case, electrically bond the shield to the back plate of the enclosure as shown in Fig. 26. Alternatively, the shield may be bonded to the enclosure wall at the point of cable entry using the normal gland fixings.

In some designs the enclosure wall used for cable entry may consist of separate panels. Bonding the motor cable shield to these surfaces is acceptable provided they make good electrical contact with the remaining structure.

Motor cable selection

When testing the Drive module alone, it is necessary to specify the use of a shielded cable for the motor. This is because the output of the Drive contains radio frequency energy caused by the switching of the thyristors. In order to meet the standards specified, if the cable were not shielded then an output filter would have to be used in order to reduce the radio frequency voltage in the motor circuit to the level required by the standards. This situation is the same for all DC Drives from all manufacturers.

It is the responsibility of the owner or user to ensure that the installation of the Drive and the way it is operated and maintained complies with the requirements of the Health and Safety at Work Act in the United Kingdom and applicable legislation and regulations and codes of practice in the UK or elsewhere.

Safety grounding (earthing) and cabling should conform to local codes of practice and regulations. Safety grounding must always take precedence over the requirements of EMC grounding.

Special consideration is needed It the filter is to be used in movable equipment where the ground is connected through a flexible cable and plug/socket. Additional measures such as a supplementary ground connection or ground continuity monitoring will be required.

For more detailed information, refer to the Mentor II EMC datasheet.

Fig. 26 EMC installation guidelines for Mentor II Drive (field connections are shown for M25 to M210).

Conducted emissions from the main thyristor convertor suppressed by line to earth capacitors and standard line reactors.

Fig. 26 (cont.) Conducted emissions from the main thyristor convertor suppressed by an RFI filter.

This page is intentionally blank

[^0]: 0 = input not active
 1 = input active
 Monitors the control input from terminal TB3-27 and indicates status.

